
AspectC++ – A Language Overview

c©2005 Olaf Spinczyk <os@aspectc.org>
Friedrich-Alexander University Erlangen-Nuremberg

Computer Science 4

May 20, 2005

This is an overview about the AspectC++ language, an aspect-oriented extension for
C/C++, prepared for the European AOSD Network of Excellence. Detailed information
on AspectC++ including manuals and tutorial slides with lots of examples is available
from the AspectC++ Project Homepage.

The overview is based on the documentation for AspectC++ 0.9.3. The language is
still “work in progress”.

Joinpoint Model and Pointcut Language

AspectC++ supportsstatic joinpoints as well asdynamicjoinpoints. While static join-
points are named entities in the static program structure, dynamic joinpoints are events
that happen during the program execution.

Static Joinpoints

The following kinds of C++ program entities are considered as static joinpoints:

• classes, structs, and unions

• namespaces

• all kinds of functions (member, non-member, operator, conversion, etc.)

Static joinpoints are described bymatch expressions. For example,"% ...::foo(...)"

is a match expression that describes all functions calledfoo (in any scope, with any
argument list, and any result type). More information on match expressions is given
below. Note that not all of these static joinpoint types are currently supported as a
target of advice (see section ’Advice for Static Joinpoints’).

Dynamic Joinpoints

The following kinds of events that might happen during the execution of a program are
considered as dynamic joinpoints:

• function call

1

http://www.aspectc.org/

AspectC++ Language Overview

• function execution

• object construction

• object destruction

The description of dynamic joinpoints is based upon the description mechanism for
static joinpoints in conjunction with joinpoint type specificpointcut functions. For
example:

• call ("% ...::foo(...)")

• execution ("float MathFuncs::%(float)")

• construction ("SomeClassName")

• destruction ("A"||"B")

While "% ...::foo(...)" represents a set of static joinpoints, i.e. all functions called
foo, the expressioncall("% ...::foo(...)") describes all calls to these functions.
A similar mapping from static to dynamic joinpoints is done by theexecution(),
construction(), anddestruction() pointcut functions.

Pointcut Functions

Further pointcut functions are used to filter or select joinpoints with specific properties.
Some of them can be evaluated at compile time while others yield conditions that have
to be checked at run time:

• cflow (pointcut) – captures all joinpoints in the dynamic execution context
of the joinpoints inpointcut.

• base (pointcut) andderived (pointcut) – yield classes based on queries
in the class hierarchy

• within (pointcut) – filters joinpoints depending on their lexical scope

• that (type pattern), target (type pattern), result (type pattern),
andargs (type pattern) – filters joinpoints depending on the current object
type, the target object type in a call, and the result and arguments types of a
dynamic joinpoint.

• &&, || , ! – intersection, union, and exclusion of joinpoints in pointcuts

Instead of thetype patternit is also possible to pass the name of acontext variableto
which context information from the joinpoint shall be bound. In this case the type of
the context variable is used for the type matching.

c©2005 Olaf Spinczyk 2

AspectC++ Language Overview

Match Mechanism Capabilities

The match mechanism provides% and... as wildcard symbols. Thereby the following
features are supported:

• pattern based name matching, e.g."%X%" matches all names that contain an up-
percaseX

• flexible scope matching, e.g."Foo::...::Bar" matches Bar in the scopeFoo or
any of its nested scopes

• flexible matching of function argument type lists, e.g."% foo(...,int)" matches
foo with anint as its last argument type

• matching template argument lists, e.g."C<T,...>" matches an instance of the
class templateC with a first template argument typeT

• type patterns, e.g."const % *" matches all pointer types that reference objects
of a constant type

Named Pointcuts

Pointcut expressions can be given a name. The definition of a named pointcut can be
placed in any aspect, class, or namespace. The mechanism can be used for dynamic as
well as static joinpoints. For example:

class OStream {

// ...

pointcut manipulator_types () = "hex"||"oct"||"bin"||"endl";

};

In the context of an aspect, named pointcuts can also be defined as virtual or pure
virtual, which allows refinement/definition in a derived aspect (see example at the end
of this overview).

Advice Model and Language

Advice for Static Joinpoints

The only kind of advice for static joinpoints that is currently supported by AspectC++
is the introduction. By using this kind of advice the aspect code is able to add new
elements to classes, structures, or unions. Everything that is syntactically permitted in
the body of a C++ class can be introduced by advice:

• attribute introduction, e.g.advice "AClass" : int _introduced_attribute;

• type introduction, e.g.advice "AClass" : typedef int INT;

• member function introduction, e.g.advice "AClass" : void f();

• nested type introduction, e.g.advice "AClass" : class Inner { ... };

• constructor introduction, e.g.advice "AClass" : AspectName(int, double);

c©2005 Olaf Spinczyk 3

AspectC++ Language Overview

• destructor introduction, e.g.advice "AClass" : ~AspectName() { ... }

• base class introduction, e.g.advice "AClass" : baseclass(ANewBaseclass);

The syntaxadvice <target -pointcut > : <introduction > supports the intro-
duction of an element into an arbitrary set of target classes with a single advice.

Advice for Dynamic Joinpoints

Advice for dynamic joinpoints is used to affect the flow of control, when the joinpoint
is reached. The following kinds of advice are supported:

• before advice

• after advice

• around advice

These advice types can orthogonally be combined with all dynamic joinpoint types.
Advice for dynamic joinpoints is defined with the following syntax:

advice <target-pointcut > : (before |after |around) (<arguments >) {
<advice-body >

}

While the before and after advice bodies are executed before or after the event de-
scribed by<target-pointcut> , an around advice body is executed instead of the
event.

Advice Language and Joinpoint API

The advice body is implemented in standard C++. Additionally, thejoinpoint API
can be used to access (read and write)context information(e.g. function argument
and result values) as well asstatic type informationabout the current joinpoint. To
access the joinpoint API the objectJoinPoint *tjp can be used, which is implicitly
available in advice code. Advice that uses the static type information provided by the
joinpoint API is calledgeneric advice. This concept is the key for generic, type-safe,
and efficient advice in AspectC++. The static type information from the joinpoint
API can even be used to instantiate template metaprograms, which is a technique for
joinpoint specific code generation at compile time.

The joinpoint API is also used to proceed the execution from within around advice
(tjp->proceed()). Alternatively,tjp->action() may be called to retrieve and store the
proceed contextas anAC::Action object. Later,action.trigger() may be called to
proceed the intercepted flow of control.

Catching and changing exceptions can be done by standard C++ features in around
advice (try, catch, throw).

c©2005 Olaf Spinczyk 4

AspectC++ Language Overview

Example

The following advice isgeneric advice, because its implementation can deal with mul-
tiple overloadedC::foo(...) implementations that have different result types:

advice execution ("% C::foo(...)") : around () {

cout << "executing " << JoinPoint::signature()

<< " on " << *tjp ->that() << endl;

tjp ->proceed ();

cout << "the result was " << *tjp ->result() << endl;

}

Aspect Module Model

The following example code shows an aspectLogging defined in AspectC++:

aspect Logging {

ostream *_out; // ordinary attributes

public :

void bind_stream(ostream *o) { _out = o; } // member function

pointcut virtual logged_classes () = 0; // pure virtual pointcut

// some advice

advice execution ("% ...::%(...)") && within (logged_classes ()) :

before () {

*_out << "executing " << JoinPoint::signature () << endl;

}

};

Aspects are the language element that is used to group all the definitions that are needed
to implement a crosscutting concern. An aspect definition is allowed to contain mem-
ber functions, attributes, nested classes, named pointcuts, etc. as ordinary classes.
Additionally, aspects normally contain advice definitions.

Aspects that contain pure virtual member functions or pure virtual pointcuts are called
abstract aspects. These aspects only affect the system if a (concrete) aspect is derived,
which defines an implementation for the pure virtual functions and the pure virtual
pointcuts. Abstract aspects are the AspectC++ mechanism to implement reusable as-
pect code.

Aspect inheritance is slighly restricted. Aspects can inherit from ordinary classes and
abstract aspects but not from concrete aspects. Derived aspects can redefine virtual
pointcuts and virtual functions defined by base aspects.

Aspect Instantiation Model

By default, aspects are singletons, i.e. there is one global instance automatically created
for each non-abstract aspect in the program. However, by defining theaspectof() static
member function of an aspect the user can implement arbitrary instantiation schemes,
such asper-target, per-thread, or per-joinpoint. For each dynamic joinpoint that is
affected by the aspect theaspectof() function has to return the right aspect instance

c©2005 Olaf Spinczyk 5

AspectC++ Language Overview

on which the advice bodies are invoked. The instances themselfs are usually created
with the introduction mechanism. Theaspectof() function has access to the joinpoint
API in order to find the right aspect instance for the current joinpoint. Here is an
example:

aspect InstancePerTargetAspect {

pointcut target_class () = "TargetName";

// an attribute of the aspect (stored per target)

int _calls;

// aspect instance created by introduction:

advice target_class () : InstancePerTargetAspect _instance;

// definition of the instantiation scheme in aspectof():

static InstancePerTargetAspect *aspectof() {

return tjp ->target()->_instance;

}

// the advice

advice call ("% ...::%(...)") && target(target_class ()) : before () {

_calls++;

}

// attribute initialization in the aspect constructor

InstancePerTargetAspect () : _calls (0) {}

};

Aspect Composition Model

In AspectC++ any number of aspects can be used in the same application. Aspect com-
position is currently restricted to inheritance from abstract aspects. Concrete aspects
cannot be used for the implementation of new aspects.

Aspect interactions can be handled by the developer on a per joinpoint basis withor-
der advice, e.g. advice execution("void f%(...)") : order("Me", !"Me") gives
the aspectMe the highest precedence at all joinpoint described by the pointcut expres-
sion. Order advice can be given by any aspect for any aspect, thus can be separated
from the affected aspects. Aspect names in order advice declarations are match expres-
sions and may contain wildcards, e.g.order("kernel::%", !"kernel::%") gives every
aspect declared in the namespacekernel precedence over all other aspects. Besides this
partial order in the precedence of aspects, the precedence of advice within one aspect
is determined according to its position in the aspect definition. As long as it does not
conflict with order advice AspectC++ aims to give aspects the same precedence at all
joinpoints.

Aspect Weaving Model

The only implementation of AspectC++ is based on static source to source transforma-
tion. Nevertheless, the language could also be used for dynamic weavers if some really
hard technical challenges like runtime introductions were solved.

c©2005 Olaf Spinczyk 6

AspectC++ Language Overview

Example

A reusable observer pattern implementation in AspectC++:

aspect ObserverPattern {

// Data structures to manage subjects and observers
...

public :

// Interfaces for each role

struct ISubject {};

struct IObserver {

virtual void update(ISubject *) = 0;

};

// To be defined by the concrete derived aspect

pointcut virtual observers () = 0;

pointcut virtual subjects () = 0;

// subjectChange() matches all non-const methods by default

pointcut virtual subjectChange () =

execution ("% ...::%(...)" && !"% ...::%(...) const")

&& within (subjects());

// Add new baseclass to each subject/observer class

// and insert code to inform observers

advice observers () : baseclass (IObserver);

advice subjects () : baseclass (ISubject);

advice subjectChange () : after () {

ISubject* subject = tjp ->that();

updateObservers(subject);

}

// Operations to add, remove and notify observers

void updateObservers(ISubject* sub) { ... }

void addObserver(ISubject* sub , IObserver* ob) { ... }

void remObserver(ISubject* sub , IObserver* ob) { ... }

};

Concrete aspect, which applies the pattern:

#include "ObserverPattern.ah"

#include "ClockTimer.h"

aspect ClockObserver : public ObserverPattern {

// define the pointcuts

pointcut subjects() = "ClockTimer";

pointcut observers() = "DigitalClock"||"AnalogClock";

public :

advice observers() :

void update(ObserverPattern::ISubject* sub) {

Draw();

}

};

c©2005 Olaf Spinczyk 7

