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Abstract. Besides object-orientation, generic types or templates and aspect-
oriented programming (AOP) gain increasing popularity as they provide addi-
tional dimensions of decomposition. Most modern programming languages like
Ada, Eiffel, and C++ already have built-in support for templates. For Java and
C# similar extensions will be available in the near future. Even though promis-
ing, the combination of aspects with generic and generative programming is
still a widely unexplored field. This paper presents our extensions to the As-
pectC++ language, an aspect-oriented C++ derivate. By these extensions aspects
can now affect generic code and exploit the potentials of generic code and tem-
plate metaprogramming in their implementations. This allows aspects to inject
template metaprograms transparently into the component code. A case study
demonstrates that this feature enables the development of highly expressive and
efficient generic aspect implementations in AspectC++. A discussion whether
these concepts are applicable in the context of other aspect-oriented language
extensions like AspectJ rounds up our contribution.

1 Introduction

Besides object-orientation, most modern programming languages offer generic types or
templates to provide an additional dimension of decomposition. Languages like Ada,
Eiffel and C++ already have built-in support for templates. For the Java language, spe-
cial extensions for generic types have been proposed [6] and will soon be available in
Java 1.5 implementations [4]. Template support has also been proposed for the next
version of the C# language and the .NET framework [12]. We are convinced that for
a long-term and broad acceptance of AOP it is necessary to provide native support for
template constructs in current AOP languages.

As AspectC++ [17] supports AOP in the context of C++, which offers highly so-
phisticated template features, it is an ideal example to study the relation of these two
worlds. To familiarize the reader with the terminology used throughout this paper we
start with a very brief introduction of the most important AspectC++ language concepts.

1.1 AspectC++ Concepts and Terminology

AspectC++ is a general purpose aspect-oriented language extension to C++ designed
by the authors and others. It is aimed to support the well-known AspectJ programming
style in areas with stronger demands on runtime efficiency and code density.
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The AspectC++ terminology is strongly influenced by the terminology introduced
by AspectJ [13]. The most relevant terms are joinpoint and advice. A joinpoint denotes
a specific weaving position in the target code (often called component code, too). Join-
points are usually given in a declarative way by a joinpoint description language. Each
set of joinpoints, which is described in this language, is called a pointcut. In AspectC++
the sentences of the joinpoint description language are called pointcut expressions. For
example the pointcut expression

call("% Service::%(...)")

describes all calls to member functions of the class Service1. The aspect code that is
actually woven into the target code at the joinpoints is called advice. Advice is bound to
a set of joinpoints (given by a pointcut expression). For example by defining the advice

advice call("% Service::%(...)") : before () {
cout < < "Service function invocation" < < endl;

}
the program will print a message before any call to a member function of Service. The
advice code itself has access to its context, i.e. the joinpoint which it affects, at runtime
by a joinpoint API. Very similar to the predefined this-pointer in C++, AspectC++
provides a pointer called tjp, which provides the context information. For example the
advice

advice call("% Service::%(...)") : before () {
cout < < tjp->signature () < < " invocation" < < endl;

}
prints a message that contains the name of the function that is going to be called.

1.2 Dimensions of Interest

The combination of aspects and templates has two general dimensions of interest. First,
there is the dimension of using aspects for the instrumentation of generic code. Second,
there is the dimension of using generic code in aspects, that is, to generalize aspect
implementations by utilizing generic code. We will see that for the first it is necessary
to extend the joinpoint description language while the second leads to specific joinpoint
API requirements.

Dimension 1: Using Aspects for the Instrumentation of Generic Code. The most
common and popular applications of templates are generic algorithms and container
classes, as provided by the C++ standard library STL. To support the modular im-
plementation of crosscutting concerns inside template libraries, a template-aware AOP
language should be able to weave aspect code into template classes and functions. This
means, for example, that we want to be able to run advice code before and/or after calls
to or executions of generic classes or functions. Furthermore, it would be desirable to be
able to affect even individual template instances. For example, we might want to track
element additions to a specific instance of a generic container. Open questions are:

1 % and ... are wildcard symbols in AspectC++ (as * and .. in AspectJ).
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– Which extensions to the joinpoint languages are necessary to describe these new
kinds of joinpoints?

– Which implementation issues for aspect weavers and compilers arise from such
extensions?

As today’s aspect-oriented programming languages offer a wide range of language fea-
tures, finding a common (language-independent) answer for these questions is difficult.
However, this paper will answer them in the context of C++/AspectC++ and discuss
them in the context of other aspect languages that support similar language features.

Dimension 2: Using Generic Code in Aspects. Generic programming provides an ad-
ditional dimension for separation of concerns (SoC). Thus, we also want to use template
code in aspect implementations. This seems easy at first sight. However, an advanced
utilization of generic code in advice implementations incorporates (static) type infor-
mation from the advice context. For example, consider a reusable caching aspect, im-
plemented by advice code that uses a generic container to store argument/result pairs of
function invocations. To instantiate the container template from within the advice code,
the affected function argument types and result type are needed, which in turn depend
on the joinpoint the advice code affects. As in this case different advice code versions
have to be generated, it is reasonable to understand the advice as being instantiated for
each joinpoint depending on the types it needs for code generation. We will use a new
term for this special kind of advice:

We call advice a generic advice, if its implementation
depends on joinpoint-specific static type information.

As templates are instantiated at compile time, the type information, which is offered
by the run-time joinpoint API of current aspect languages, is not sufficient. Instead, we
need a compile-time joinpoint API that provides static type information (e.g. the pa-
rameter types of the affected function) about the advice instantiation context. The type
information provided by the compile-time joinpoint API may then be used to instantiate
templates. Open questions concerning dimension 2 are:

– How should aspect languages support the usage of generic code in aspects?
– Which information should be provided by a static joinpoint API?

Besides generic programming, C++ templates are also the base for other advanced and
powerful SoC concepts like policy-based design[2] and generative programming[9] that
are implemented by template metaprogramming[18]. The ability to use template con-
structs in advice code promises to forge the link between AOP and these advanced SoC
concepts. Aspects may provide great benefit for generative programming and policy-
based design by enabling the non-invasive intrusion of template metaprograms. At
the same time, generative techniques may be used to implement highly flexible and
runtime-efficient aspect implementations.
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1.3 Objectives

In this paper we discuss the combination of aspects and templates in AspectC++. From
the discussion in this introduction we conclude that weaving in template instances is
a consequent and probably useful extension of the target scope of aspects. However,
providing advice code with the necessary context information to exploit the power of
generic code and metaprograms improves the expressive power of aspect implementa-
tions significantly. This promises to be the more interesting research topic2. Thus, our
work covers both dimensions but concentrates on the second. By presenting a case study
we will demonstrate the power of the generic advice feature and the consequences in
terms of code quality and performance.

1.4 Outline

The rest is this paper is structured as follows. It starts in section 2 with a description
of the template support incorporated into the AspectC++ language and compiler. This
is followed by a case study in section 3 that shows how generative techniques can be
used for the implementation of a highly flexible and efficient aspect. Furthermore, it
evaluates the performance and quality of the solution, which we claim to be unreach-
able alone with pure template techniques or classic AOP. Section 4 discusses whether
similar aspect-oriented language extensions for base languages other than C++ could
implement the same concepts. Finally, an overview of related work is given and the
results of this paper are summarized.

2 Template Support in AspectC++

This section describes our integration of template support into AspectC++. It is struc-
tured according to the two dimensions3 identified in the introduction. Each of these
parts starts with a description of template-related C++ features, which are relevant for
the integration, continues with a presentation of our extensions to AspectC++ on the
language-level, and ends with a discussion of implementation issues.

2.1 Dimension 1: Using Aspects for the Instrumentation of Generic Code

One possible combination of aspects with templates is the application of advice to tem-
plate classes and functions as discussed in 1.2.

Relevant Language Features. C++ templates provide a specific kind of polymor-
phism which is often referred to as parametric polymorphism. While subclass poly-
morphism (based on interface inheritance) defines a runtime substitutability between
object instances, parametric polymorphism defines a compile-time substitutability be-
tween types. A formal template parameter can be substituted by a type T1 that provides

2 It is also more appropriate for a conference on generative programming.
3 In fact, the part on the second dimension is divided into 2a and 2b to handle the very C++-

specific template metaprogramming feature separately.
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a specific (static) interface. This interface is defined by the set of operations, types
and constants used in the template implementation. Note that, in contrast to subclass
polymorphism, the parametric substitutability of types T1 and T2 does not lead to any
runtime relationship between object instances of T1 and T2. Templates do not break
type-safety and induce, in principle, no runtime overhead at all.

In C++, the basic language elements for generic programming are template classes
and template functions. For example, the C++ standard library class

template< class T, class U > struct pair {
T first;
U second;
pair() : first(), second() {}
pair(const T& x, const U& y) : first(x), second(y) {}
...

};
defines a simple 2-Tuple that can be instantiated with any two types, e.g pair< int, int

> or pair< Foo, pair< Bar, int > > that provide at least a default or copy constructor.

Extensions to the Joinpoint Language. Weaving in generic code requires the pro-
grammers to describe the set of relevant template instances. Thus, the first step to in-
tegrate template support into AspectC++ was to extend the joinpoint description lan-
guage.

In AspectC++ joinpoints that should be affected by advice are described by so-
called pointcut expressions. For example

call("% Service::%(...)") && cflow(execution("void error %(...)"))

describes all calls to member functions of the class Service . By combining (&& opera-
tion) these joinpoints with the cflow pointcut function these joinpoints become condi-
tional. They are only affected by advice if the flow of control already passed a function
with a name beginning with error . Users may define pointcut expressions of arbitrary
complexity to describe the crosscutting nature of their aspects. A list of all built-in point-
cut functions of AspectC++ is available in the AspectC++ Language Quick Reference
Sheet4.

The core of the joinpoint language are match-expressions. In AspectC++ these ex-
pressions are quoted strings where % and ... can be used as wildcards. They can be un-
derstood as regular expressions matched against the names of known program entities
like functions or classes. To support advice for template class and function instances,
the signatures of these instances just have to be considered when match expressions
are evaluated. In C++ the signatures of template instances are well-defined and can di-
rectly be used to extend the set of known program entities for matching. For example,
if a function instantiates template classes with the signatures set<int> and set<float>,
the match-expression "% set<int>::%(...)" will only match the member functions of
set<int>. Of course, it is also possible to match the member functions of all instances
by using "% set<...>::%(...)".

4 The AspectC++ compiler and documentation are available from www.aspectc.org.
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Implementation Issues. While this extension is straightforward on the language level
it has severe consequences on the weaver implementation. The weaver has to be able
to distinguish template instances during the weaving process. Our AspectC++ compiler
transforms AspectC++ source code into C++ code5. Thus, the compiler has to perform
a full template instantiation analysis of the given source code to distinguish template
instances and to compare their signatures with match-expressions. To be able to affect
only certain instances our compiler uses the explicit template specialization feature of
C++. For example, if advice affects only the instance set<int> the template code of set
is copied, manipulated according to the advice, and declared as a specialization of set
for int6.

2.2 Dimension 2a: Using Generic Code in Aspects

Templates instances, like pair<int, int> in the example above, can also be used in as-
pect code. However, for a more elaborate and context dependent utilization of templates
in advice code, additional support by the aspect language is necessary.

Relevant Language Features. Generic advice uses type information from its instanti-
ation context (the joinpoints). For example, it may instantiate a generic container with
the result type of the function the advice is applied to. For this, the argument and result
types have to be accessible to the advice code at compile time.

The suitable C++ language concept for this purpose is type aliases. In C++, a type
alias is defined using the typedef keyword. Type aliases can be used to transport type
information through other types or templates:

template< class T, class U > struct pair {
typedef T first type;
typedef U second type;
...

};
template<class PAIR> typename PAIR::first type& get first(PAIR& p) {
return p.first;

}

The Static Joinpoint API. To support the implementation of generic advice code the
AspectC++ joinpoint API had to be extended. It now provides static type information
about all types that are relevant for the joinpoint.

Table 1 gives an overview about the new joinpoint API. The upper part (types and
enumerators) provides compile-time type information, which can be used by generic
code or metaprograms instantiated by advice.

The methods in the lower part of table 1 can only be called at runtime. However,
note that the new function Arg<i>::ReferredType *arg() now offers a statically typed

5 AspectC++ is based on our PUMA C++ transformation framework which is beeing developed
in line with AspectC++, but may be used for other purposes as well.

6 C++ does not support the explicit specialization for template functions. However, we can work
around this problem by defining a helper template class.
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Table 1. The AspectC++ Joinpoint API

types and enumerators:
That object type

Target target type (call)

Arg<i>::Type argument type

ARGS number of arguments

Result result type

static methods:
const char *signature() signature of the function or attribute

unsigned id() identification of the join point

AC::JPType jptype() type of join point

AC::Type type() type of the function or attribute

AC::Type argtype(int) types of the arguments

int args() number of arguments

AC::Type resulttype() result type

non-static methods:
void proceed() execute join point code

AC::Action &action() Action structure

That *that() object referred to by this

Target *target() target object of a call

void *arg(int) actual argument

Arg<i>::ReferredType *arg() argument with static index

Result *result() result value

interface to access argument values if the argument index is known at compile time.
AC::Type is a special data type that provides type information at runtime, but cannot be
used to instantiate templates.

In the future, additional type information, e.g. types of class members and template
arguments, will be added to the joinpoint API, as this might allow further useful appli-
cations.

Implementation Issues. AspectC++ generates a C++ class with a unique name for
each joinpoint that is affected by advice code. Advice code is transformed into a tem-
plate member function of the aspect, which in turn is transformed to a class. The unique
joinpoint class is passed as a template argument to the advice code. Thus, the advice
code is generic and can access all type definitions (C++ typedefs) inside the joinpoint
class with JoinPoint::Typename. Indirectly these types can also be used by using the
type-safe argument and result accessor function. The following code fragment shows
advice code after its transformation into a template function.

class ServiceMonitor {
// ...
template<class JoinPoint> void a0 after (JoinPoint *tjp) {
cout < < "Result: " < < *tjp->result () < < endl;

}
};
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As required for generic advice the C++ compiler will instantiate the advice code
with JoinPoint as a code generation parameter. Depending on the result type of
tjp->result() for the joinpoint the right output operator will be selected at compile
time.

2.3 Dimension 2b: Using Template Metaprograms in Aspects

The C++ template language provides elaborate features that make it a Turing-complete
functional language for static metaprogramming on its own. A C++ template metapro-
gram works on types and constants and is executed by the compiler at compile time.
Generative Advice is a special form of generic advice that uses joinpoint-specific type
information for the instantiation of template metaprograms.

Relevant Language Features. In addition to types, C++ supports non-type template
parameters, also frequently referred to as value template parameters. Value template
parameters allow to instantiate a template according to a compile-time constant. Apart
from the definition of compile-time constants, value template parameters are frequently
used for arithmetics and looping in template metaprogramming.

A language that provides a case discrimination and a loop construct is Touring-
complete. In the C++ template metalanguage, case discrimination is realized by tem-
plate specialization. Loops are implemented by recursive instantiation of templates.
These language features, in conjunction with non-type template parameters, are the
building blocks of template metaprograms7. This is shown in the most popular (and
simple) example of a template metaprogram that calculates the factorial of an integer at
compile-time:

template< int N > struct fac {
enum{ res = N * fac< N - 1 >::res }; // loop by rec. instantiation

};
// condition to terminate recursion by specialization for case 0
template<> struct fac< 0 > {
enum{ res = 1 };

};
// using fac
const fac 5 = fac< 5 >::res;

The fac<int> template depends on value template parameters and calculates the facto-
rial by recursive instantiation of itself. The recursion is terminated by a specialization
for the case fac<0>.

Type Sequences. With adequate support by the static joinpoint API metaprograms
would be able to iterate over type sequences like the argument types of a joinpoint
at compile time. However, these sequences have to be provided in a “metaprogram-
friendly” way. Just generating ArgType0, ArgType1, . . . , ArgTypeN would not allow

7 Non-type template parameters are, strictly speaking, not a mandatory feature for the Turing-
completeness of the C++ template language. They “just” allow one to use the built-in C++
operator set for arithmetic expressions.
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metaprograms to iterate over these types. For this purpose the generated joinpoint-
specific classes contain a template class Arg<I> which contains a the type information
for the Ith argument as typedefs.

Implementation Issues. Sequences of types can be implemented by recursive tem-
plate definitions as in the Loki[1] Typelist. For the AspectC++ we decided for an
implementation with less demands on the back-end compiler based on explicit template
specialization. The following code shows the generated type for a call joinpoint in the
main() function8.

struct TJP main 0 {
typedef float Result;
typedef void That;
typedef ::Service Target;
enum { ARGS = 2 };
template <int I> struct Arg {};
template <> struct Arg<0> {
typedef bool Type; typedef bool ReferredType;

};
template <> struct Arg<1> {
typedef int & Type; typedef int ReferredType;

};
Result * result;
inline Result *result() {return result;}

};
With this type as a template argument for generic advice the advice programmer can
now use a metaprogram similar to the factorial calculation to handle each argument in
a type-safe way. A further example will be given in the next section.

3 Caching as a Generative Aspect – A Case Study

In this section we demonstrate how the possibility to exploit generic/generative pro-
gramming techniques for aspect implementations can lead to a very high level of ab-
straction. Our example is a simple caching policy for function invocations. The im-
plementation idea is straightforward: before executing the function body, a cache is
searched for the passed argument values. If an entry is found, the corresponding re-
sult is returned immediately, otherwise the function body is executed and the cache is
updated.

Caching is a typical example for a crosscutting policy. However, before we extended
AspectC++ it was not possible to implement this in a traditional aspect-oriented way.
To be generic, the aspect must be able to copy function arguments of arbitrary types
into the cache. As C++ lacks good reflection capabilities, it is not possible to do this at
runtime.

A caching policy for function invocations is also not easy to implement using so-
phisticated template techniques like policy-based design[2]. To achieve this, it would

8 The generated code depends on the compiler used as the ac++ back-end.
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be necessary to have a generic way to expose the signature (parameter types) of a func-
tion at compile time and the invocation context (actual parameter values) at runtime,
which is not available. Fortunately, exactly this information is provided by the compile-
time and run-time joinpoint API in AspectC++. Hence, it is now possible to implement
context-dependent policies, like caching, using generative techniques together with as-
pects.

In the following, we present the implementation of such a generative caching as-
pect. We introduce the example with an in-place “handcrafted” cache implementation
for a single function. A typical AOP implementation of this simple in-place cache gives
readers, who are not familiar with AOP, an idea about implementing such a policy
by an aspect. We then generalize the AOP implementation to make it independent on
the number and types of function arguments using template metaprogramming and the
static joinpoint API. This generative aspect is applicable to any function with any num-
ber of arguments. Finally, we evaluate our solution and provide a detailed performance
analysis.

3.1 Scenario

Consider an application that uses the class Calc (Figure 1). Our goal is to improve
the overall application execution speed. With the help of a tracing aspect we fig-
ured out that the application spends most time in the computational intensive func-
tions Calc::Expensive(), Calc::AlsoExpensive() and Calc::VeryExpensive(). Fur-
thermore, we detected that these functions are often called several times in order with
exactly the same arguments. Therefore, we decided to improve the execution speed by
using a simple one-element cache.

Figure 1 demonstrates the implementation principle of such a cache for the function
Calc::Expensive(). It uses a local class Cache that implements the caching function-
ality and offers two methods, namely Cache::Lookup() (line 28) and Cache::Update()

(line 32), to access and write the cached data. Cache is instantiated as a static object
(line 41) so it stays resident between function invocations.

However, as caching is useful only in certain application scenarios and
we have to write almost the same code for Calc::AlsoExpensive() and
Calc::VeryExpensive()again, we want to implement this by a reusable aspect.

3.2 Development of a Caching Aspect

The Simple Caching Aspect. Figure 2 shows a typical AOP “translation” of the
caching strategy. The class Cache has become an inner class of the aspect Caching.
The aspect gives around advice for the execution of Calc::Expensive(), Cache is now
instantiated in the advice body (line 22). On each invocation, the function parameters
are first looked up in the cache and, if found, the cached result is returned (lines 25–27).
Otherwise they are calculated by invoking the original function and stored together with
the result in the cache (lines 28–34).

This implementation of a caching aspect is quite straightforward. It uses methods of
the runtime joinpoint API (tjp->arg() and tjp->result()) to access the actual param-
eter and result values of a function invocation. However, it has the major drawback that
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1 struct Vector
2 {
3 Vector( double _x = 0, double _y = 0 )
4 : x( _x ), y( _y ) {}
5 Vector(const Vector& src){operator =(src);}
6 Vector& operator =( const Vector& src ) {
7 x = src.x; y = src.y; return *this;
8 }
9 bool operator==(const Vector& with) const{

10 return with.x == x && with.y == y;
11 }
12 double x, y;
13 };
14

15 class Calc {
16 public:
17 Vector Expensive(const Vector& a,
18 const Vector& b) const;
19 int AlsoExpensive(double a,double b) const;
20 int VeryExpensive(int a,int b,int c) const;
21 };
22

23

24 Vector Calc::Expensive(const Vector& a,
25 const Vector& b)const{
26 struct Cache {
27 Cache() : valid( false ) {}

28 bool Lookup( const Vector& _a,
29 const Vector& _b ) {
30 return valid && _a == a && _b == b;
31 }
32 void Update( const Vector& _res,
33 const Vector& _a,
34 const Vector& _b ) {
35 valid = true;res = _res; a = _a; b = _b;
36 }
37 Vector a, b, res;
38 bool valid;
39 };
40

41 static Cache cc;
42

43 // Lookup value in cache
44 if( cc.Lookup( a, b ) ) {
45 return cc.res;
46 } else { // Not in cache
47 Vector Result;
48 // ... do calculations ...
49

50 // Store result in cache
51 cc.Update( Result, a, b ) ;
52 return cc.res;
53 }
54 }

Fig. 1. Elements of the Example Application

it can be applied only to functions with a specific signature, namely functions with two
arguments of type Vector which return a Vector. This limited reusability of the caching
aspect comes from the fact that both the class Cache and the advice code implementation
are built on (implicit) assumptions about the argument and result types.

Generalization. The simple cache class implementation in Figure 2 makes the follow-
ing implicit assumptions about the advice context it is applied to:

1. The function’s result and arguments are of type Vector.
2. The function gets exactly two arguments. Besides the return value, exactly two

values have to be updated by Cache::Update() and compared by Cache::Lookup().

Generalizing from 1 (the result/argument types) can be achieved by passing the types
as template parameters. However, to generalize from 2 (the number of arguments) is
a bit more complicated. Before weaving time, it is not possible to decide how many
parameters have to be stored, updated and compared by Cache. The memory layout of
the class Cache, as well as the code of its member functions Lookup() and Update(), has
therefore to be generated at compilation time. With AspectC++, it is now possible to
do this job by a template metaprogram. The new static joinpoint API provides all the
necessary context information (number/types of parameters, result type) in a way that
is accessible by the C++ template language.

To simplify the implementation of the generative caching aspect (Figure 3), it is
mainly based on existing libraries and well-known idioms for template metaprogram-
ming. We used the Loki library[2] by Alexandrescu, especially Loki::Typelist and
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1 aspect Caching {
2 struct Cache {
3 Cache() : valid( false ) {}
4 bool Lookup( const Vector& _a,
5 const Vector& _b ) const {
6 return valid && _a == a && _b == b;
7 }
8 void Update( const Vector& _res,
9 const Vector& _a,

10 const Vector& _b ) {
11 valid = true;
12 res = _res;
13 a = _a; b = _b;
14 }
15 Vector a, b, res;
16 bool valid;
17 };
18

19 advice execution(
20 "Vector Calc::%( const Vector& %,"
21 "const Vector& % )" ) : around() {
22 static Cache cc;
23

24 // Lookup value in cache
25 if( cc.Lookup( *(Vector*)tjp->arg(0),
26 *(Vector*)tjp->arg(1) ) )
27 *tjp->result() = cc.res;
28 else {
29 // Not in cache. Calculate and store
30 tjp->proceed();
31 cc.Update( *(Vector*)tjp->result(),
32 *(Vector*)tjp->arg(0),
33 *(Vector*)tjp->arg(1));
34 }
35 }
36 };

Fig. 2. Simple Caching Aspect

Loki::Tuple9. The Loki::Tuple construct creates (at compile time) a tuple from a list
of types, passed as a Loki::Typelist. The resulting tuple is a class that contains one
data member for each element in the type-list. The rough implementation idea is, to
pass a list of parameter types to the Cache template and to store the cache data in a
Loki::Tuple (instead of distinct data members). The Lookup() and Update() methods
are created at compile time by special generators, because the number of arguments
(and therefore the number of necessary comparisons and assignments) is unknown un-
til the point of template instantiation.

In the implementation (Figure 3), the Cache class gets only one template parame-
ter (line 32), TJP, which is used to pass the actual joinpoint type. The joinpoint type,
JoinPoint, is created by the AspectC++ compiler and implicitly known in every advice
body. It provides the necessary context information. The advice code passes JoinPoint
as a template argument to Cache in the instantiation of the cache object (line 81). Every-
thing else needed for the implementation is retrieved from types and constants defined in
TJP. The Cache class itself is derived from a Loki::Tuple, built from the argument types
TJP::Arg<0>::Type, TJP::Arg<1>::Type, ... (line 34). However, the argument types first
have to be transformed into a Loki::Typelist. This task is performed by the JP2LokiTL

metaprogram (lines 13-28), which also removes possible const and reference attributes
from the types with a Traits helper class. By deriving Cache from a tuple constructed
this way, it already contains one data member of the correct type for each function ar-
gument. The remaining data members (res and valid) are defined explicitly (lines 64,
65).

The code for the methods Cache::Lookup() and Cache::Update() is generated by
metaprograms. The Comp N metaprogram loops over the function arguments and gen-
erates a conjunction of comparisons. Each iteration adds one comparison between the

9 Loki was chosen not only because it provides high level services for our implementation. As
a “heavily-templated” library it was also considered being a good real-world test case for the
capabilities of our AspectC++ parser.
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1 #include "loki/TypeTraits.h"
2 #include "loki/Typelist.h"
3 #include "loki/HierarchyGenerators.h"
4

5 template< class T > struct Traits {
6 typedef typename Loki::TypeTraits<typename
7 Loki::TypeTraits< T >::ReferredType
8 >::NonConstType BaseType;
9 };

10

11 namespace AC {
12 // Builds a Loki::Typelist from arg types
13 template< class TJP, int J >
14 struct JP2LokiTL {
15 typedef Loki::Typelist< typename Traits<
16 typename TJP::Arg<
17 TJP::ARGS-J >::Type >::BaseType,
18 typename JP2LokiTL< TJP, J-1 >::Result
19 > Result;
20 };
21 template< class TJP >
22 struct JP2LokiTL< TJP, 1 > {
23 typedef Loki::Typelist< typename Traits<
24 typename TJP::Arg<
25 TJP::ARGS-1 >::Type >::BaseType,
26 Loki::NullType
27 > Result;
28 };
29 }
30

31 aspect Caching {
32 template<class TJP> struct Cache
33 : public Loki::Tuple< typename
34 AC::JP2LokiTL< TJP, TJP::ARGS >::Result >
35 {
36 // Comp. TJP args with a Loki tuple
37 template<class C,int I> struct Comp_N {
38 static bool proc(TJP* tjp,const C& cc){
39 return *tjp->arg< I >() ==
40 Loki::Field< I >( cc ) &&
41 Comp_N<C,I-1>::proc(tjp,cc);
42 }
43 };
44 template<class C> struct Comp_N<C, 0> {
45 static bool proc(TJP* tjp,const C& cc){

46 return *tjp->arg<0>()
47 == Loki::Field<0>(cc);
48 }
49 };
50

51 // Copies TJP args into a Loki tuple
52 template<class C, int I > struct Copy_N {
53 static void proc( TJP* tjp, C& cc ) {
54 Loki::Field<I>(cc) = *tjp->arg< I >();
55 Copy_N< C, I-1 >::proc( tjp, cc );
56 }
57 };
58 template< class C > struct Copy_N< C, 0 > {
59 static void proc( TJP* tjp, C& cc ) {
60 Loki::Field<0>(cc) = *tjp->arg< 0 >();
61 }
62 };
63

64 bool valid;
65 typename TJP::Result res;
66 Cache() : valid( false ) {}
67

68 bool Lookup( TJP* tjp ) {
69 return valid && Comp_N< Cache,
70 TJP::ARGS - 1 >::proc(tjp, *this);
71 }
72 void Update( TJP* tjp ) {
73 valid = true;
74 res = *tjp->result();
75 Copy_N< Cache,
76 TJP::ARGS - 1 >::proc(tjp, *this);
77 }
78 };
79

80 advice execution("% Calc::%(...)") : around(){
81 static Cache< JoinPoint > cc;
82

83 if( cc.Lookup( tjp ) )
84 *tjp->result() = cc.res;
85 else {
86 tjp->proceed();
87 cc.Update( tjp );
88 }
89 }
90 };

Fig. 3. Generative Caching Aspect

Ithargument, retrieved with tjp->arg<I>(), and the cached value stored in the Ith tuple
element, retrieved with the Loki::Field<I>() helper function. The Copy N metaprogram
copies in a similar way the argument values into the cache by generating a sequence of
assignments. The implementations of Cache::Lookup() and Cache::Update() just in-
stantiate these metaprograms and call the generated code (lines 68–71, 72–77).

3.3 Evaluation

The final cache implementation (Figure 3) has indeed become a generic and broadly
reusable implementation of a caching strategy. It can be applied non-invasively to func-
tions with 1 to n arguments; each argument being of any type that is comparable and
assignable. Type-safety is achieved and code redundancy is completely avoided. The
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source code complexity, on the other hand, is notably higher. The encapsulation as an
aspect may also result in a performance overhead, as the aspect weaver has to create
special code to provide the infrastructure for the woven-in advice. In the following, we
discuss these specific pros and cons of our approach.

Performance Analysis. Table 2 shows the results of our performance analysis. It
displays, from left to right, the runtime overhead induced by a native in-place cache
implementation (as in Figure 1), the simple caching aspect (Figure 2), and the gen-
erative caching aspect (Figure 3), if applied (as in the example) to the function
Calc::Expensive(). The numbers are clock cycles on a Pentium III10. For the in-place
cache, cache hit represent the costs of a successful call to Lookup(), cache miss rep-
resents the costs of an unsuccessful call to Lookup(), followed by a call to Update().
For the aspect implementations, these numbers include the additional overhead intro-
duced by AspectC++. The numbers in square brackets denote the difference between
each implementation and its in-place counterpart. They can be understood as the costs
of separating out caching as an aspect.

Table 2. Overhead of the Cache Implementations (clock cycles on a Pentium III)

C++ in-place simple aspect generative aspect

cache hit 38.0 [0.0] 55.0 [17.0] 53.0 [15.0]
cache miss 36.0 [0.0] 70.2 [34.2] 67.0 [31.0]

As expected, the in-place implementation performs best11. The additional overhead
of the aspect implementations is mainly induced by the fact that AspectC++ needs to
create an array of references to all function parameters to provide a unified access to
them12. If tjp->proceed() is called from within around advice, a function call (to the
original code) has to be performed13. In the example, this is the case in a cache-miss
situation and thereby explains why the overhead for a cache miss (31/34 cycles) is
notably higher as the overhead for a cache hit (15/17 cycles).

10 The code was compiled with Microsoft Visual C++ 2003 using /O2 /Ot optimizations. All
benchmarks measurements were done on a 700 MHz PIII E (“Coppermine”) machine running
Windows XP SP1. To reduce multitasking and caching effects, each test was performed 25
times and measured the execution cycles for 1000 repetitions (using the rdtsc instruction).
The presented results are averaged from this 25 series and then divided by 1000. The standard
derivation is < 0.1 for all series.

11 The effect that the overhead of a cache miss is even lower than for a cache hit can be ex-
plained by the four necessary (and relatively expensive) floating point comparisons to ensure
a cache hit, while a cache miss can ideally be detected after the first comparison. The skipped
comparisons seem to out-weigh the costs of Update().

12 As an optimization, AspectC++ creates this array only if it is actually used in the advice body,
which is the case here.

13 For technical reasons, AspectC++ does this indirectly via a function pointer in a so-called
action object, the call can therefore not be inlined. As the detour over an action object is not
necessary in many cases, this gives room for future improvements of the code generator.
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Although we expected the generative aspect implementation to perform not worse
than the simple aspect, we were a bit surprised that it actually performs better (2-3
cycles, around 10-12%). We assume that the structure of the code generated by the
template-metaprograms accommodates the compiler’s optimization strategies.

The additional 40-86% relative overhead for the generative aspect compared to the
in-place implementation seems to be remarkably high. However, this is basically caused
by the very low costs of our most simple cache implementation, which performs a
successful lookup in only 38 cycles. A more elaborated cache implementation (e.g. one
that stores more than one cache line) would consume more cycles and thereby lower
the effective relative overhead of the aspect-oriented solutions. And finally, the absolute
overhead of the generative caching aspect is still very low. If we assume a cache hit rate
of only 30%, applying this aspect would even pay off for a function that performs its
calculation in 270 cycles (0.39µs on a PIII-700)!

Discussion. The caching example has shown, how the combination of AOP with
template-related techniques can lead to highly generic and efficient policy implementa-
tions. As mentioned above, it is hardly possible to reach the same level of genericity in
C++ using templates or aspects alone. Both techniques seem to have their very specific
strong points that complement each other.

One strong point of aspects is the instantiation context which is available through
the joinpoint API. By providing access to the parameter and result types of a function
at compile-time, as well as to their actual values at runtime, it offers information that is
otherwise not available in a generic way. Another point of aspects is their non-invasive
applicability by a declarative joinpoint language. While a class or function has to be
explicitly prepared to be configurable by templates, aspects can be applied easily and
in a very flexible manner “on demand”. For instance, by using call advice (instead of
execution advice) it is possible to do the caching on the caller side. Hence, the same
policy can be applied to selected clients only, or to invocations of third-party code that
is not available as source.

However, the easy applicability of aspects leads to high requirements on their gener-
icity and reusability. This forges the link to templates and template metaprogramming.
Besides the well known possibility to combine a high level of expressiveness with ex-
cellent performance [19], carefully developed generic C++ code is typically instantiable
in many different contexts. By using generators, it is even possible to adapt the structure
and the code depending on the instantiation context.

To summarize, aspects are excellent in defining where and under which circum-
stances (context) something should happen, while templates provide the necessary flex-
ibility to define in a generic way what should happen at these points. The combination
works specifically well for policies which depend on the calling context of a function
and/or should be flexibly and non-invasively applicable to clients in configurable pro-
gram families. Other examples where this technique could be applied are constraint
checking, program introspection or marshaling.

While the performance analysis made evident that the resulting flexibility is not
payed by a remarkable runtime overhead, it still leads to higher source code complexity.
This is a well-known problem of template metaprogramming. However, the develop-
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ment of broadly reusable policies and aspects is anyway a task for experienced library
developers. The application developer, who uses the aspect library, is not confronted
with the template code.

A Generic Caching Aspect in Java. As an addition to our case study, we also imple-
mented a generic caching aspect in AspectJ. Our goal was to understand, if and how a
similar genericity is reachable in a language that does not support static metaprogram-
ming and follows a more runtime-based philosophy.

The Java implementation uses reflection to store the argument and result values
in the cache by dynamically creating instances of the corresponding types and invok-
ing their copy-constructors. However, while in C++ the copy-constructor is part of the
canonical class interface (and its absence is a strong indicator for a non-copyable and
therefore non-cachable class), in Java for many classes copy-constructors are “just not
implemented”. This limits the applicability of the aspect, and, even worse, it is not pos-
sible to detect this before runtime! Another strong issue of a reflection-based solution
is performance. On an 1GHz Athlon machine the additional costs of a cache-hit are
0.44µs, a cache miss costs, because of the expensive reflection-based copying, about
26.47µs. Assuming again a cache hit rate of 30%, the Java cache would not pay off for
functions that consume less than 63µs 14. This “pay-off-number” is significantly higher
than the corresponding 0.39µs (270 ticks on a PIII-700) of the C++ solution15.

To summarize, the reflection-based “generic” Java solution offers only a limited
practical applicability and may even lead to unexpected runtime errors.

4 Applicability to Other Languages

Besides C++, other (imperative) languages like Ada or Eiffel support the template con-
cept. For Java and C# generic extensions have been announced or are on the way into the
official language standards[12, 4]. Java, furthermore, provides with AspectJ the most-
popular aspect weaver. Several active research projects work on incorporating aspects
into the C# language [15, 14] and there are chances that the increasing popularity of
AOP also leads to the development of aspect weavers for Ada and Eiffel. This gives
rise to the question what kind of combination of AOP with generic programming is
feasible in these languages. In this section, we discuss if and how our insights on com-
bining AOP with generic and generative programming in C++ are applicable to other
languages.

4.1 Relevant Language Features

In the introduction of this paper, we subdivided the possible combinations of aspects
with templates into two dimensions of interest, namely using aspects to instrument

14 Java measurements were performed on a 1GHz Athlon 4 (“Thunderbird”) running Sun’s Java
1.4.2 03 on a Linux 2.6.3 kernel.

15 We can assume that the 700MHz PIII machine used for the C++ measurements does not per-
form better than the 1GHz Athlon machine used for the Java measurements.
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generic code (dimension 1) and using generic code in aspects (dimension 2). We used
(in section 2) these dimensions to examine the relevant C++ language elements and
derived requirements and implementation ideas for our aspect weaver.

In the following we use the same scheme to examine the other mentioned languages.
Table 3 shows the availability of the template-related language features in Generic Java
(GJ), Generic C# (GC#), Ada, Eiffel, and C++16.

Table 3. Language Genericity Features

GJ GC# Ada Eiffel C++ Dimension

Template classes/functions
√ √ √ √ √

1

type aliases (typedefs) (
√

)
√

Instantiation with native (build-in) types
√ √ √ √

2a
Non-type template parameters

√ √

template specialization (condition statement)
√

2b
Recursive instantiation (loop statement)

√

Dimension 1: Using Aspects to Instrument Generic Code. All of the examined lan-
guages provide the feature of template classes and/or functions. A template-aware AOP
extension for any of these languages might and should provide the ability to weave
aspect code into generic code or certain instantiations of it. While we assume that the
necessary extensions to the joinpoint languages are as straightforward as in AspectC++,
different consequences on weaver implementations may arise:

– To be able to affect only certain template instances, AspectC++ creates a modified
copy of the original template which has been specialized explicitly to promote it
to the compiler. Source code weavers for languages that do not support template
specialization may run into difficulties here.

– To weave into template code, a weaver has to be able to distinguish between tem-
plate code and ordinary code. This might become a problem for byte code weavers,
if template instances are not visible or distinguishable on this level any more.

Dimension 2: Support for Generic Advice. As explained, we subdivided the relevant
language features for dimension 2 into two sets. The language features listed for di-
mension 2a are helpful to support generic advice code. The language features listed for
dimension 2b are additionally necessary to support generative advice code. Up to now,
the 2b-features are only available in C++. Only the C++ template language provides
elaborate features that make it a Turing-complete functional language on its own which
can be used for static metaprogramming. For the other languages we therefore focus on
the support of generic advice:

16 The table contains only those features we considered as relevant from perspective of an aspect
weaver. A more elaborated comparison of the genericity support in different programming
languages can be found in [11].
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– To support generic advice, the argument and result types related to a joinpoint have
to be accessible by the advice code at compile time. In AspectC++ it was possible
to implement this by an extension of the joinpoint API which now provides type
aliases (typedefs) for all relevant types. However, even though the other examined
languages do not offer a similar type alias concept17, aspect weavers for these lan-
guages may provide the type information in another way. For instance, an aspect
weaver may offer special keywords for this purpose that are resolved to the fully
qualified actual parameter and result types at weaving time.

– Generic Java restricts template instantiations to non-primitive types only. This im-
plicitly narrows the applicability of generic advice to functions that do not use the
native build-in data types (e.g. int) in their signature. However, aspect weavers for
Java may overcome this limitation by providing automatic boxing and unboxing of
primitive data types to their corresponding object types (e.g. java.lang.Integer)18.

4.2 Summary

In principle, all of the examined languages are candidates for template-aware aspect-
oriented language extensions. Weaving in generic code (dimension 1) as well as generic
advice (dimension 2a) should be feasible in these languages, too. However, while in As-
pectC++ it was possible to use built-in C++ language features for some important parts
of the implementation, weavers for other languages may encounter their own difficul-
ties here. Template-metaprogramming is a very powerful, but unfortunately somewhat
C++-specific technique. Even if desirable, it is unlikely that the combination of AOP
with generative programming (dimension 2b) is applicable to any of the other examined
languages.

5 Related Work

No publications deal with the combination of aspects and templates so far. The few
existing work focuses on attempts to “simulate” AOP concepts in pure C++ using ad-
vanced template techniques or macro programming [8, 3, 10]. In these publications it is
frequently claimed that, in the case of C++, a dedicated aspect language like AspectC++
is not necessary. There is a word of truth in it. Technically speaking, the instantiation
of advice code (according to a specific joinpoint at weave time) and the instantiation
of a template (according to a set of template parameters at compile time) are similar
processes. However, this is a too operational view on the ideas of AOP. The important
difference is where and how instantiations have to be specified. A class has always to be
explicitly prepared to be parameterizable by templates. The instantiation and context of
a parameterized class, has to be described explicitly as well, namely at the point it is ac-
tually utilized. The instantiation points of an advice, are, in contrast, described implicitly

17 GC# supports type aliases only on local namespace scope. The Ada type keyword, which
seems to be somewhat similar to C++ typedef at first sight, actually introduces a new distinct
type that is not implicitly convertible to any other type.

18 AspectJ, for instance, already uses this technique for the argument/result accessors in its run-
time joinpoint API.
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by a joinpoint description language in the aspect code, outside the class definition and
class utilization. The advice context is implicitly available through the joinpoint API. To
our understanding, this non-invasive, declarative approach is at heart of aspect-oriented
programming.

OpenC++ [7] is a MOP for C++ that allows a compiled C++ metaprogram to trans-
form the base-level C++ code. The complete syntax tree is visible on the meta-level
and arbitrary transformations are supported. OpenC++ provides no explicit support for
AOP-like language extensions. It is a powerful, but somewhat lower-level transforma-
tion and MOP toolkit.

Other tools based on C++ code transformation like Simplicissimus[16] and Code-
Boost[5] are mainly targeted to the field of domain-specific program optimizations for
numerical applications. While CodeBoost intentionally supports only those C++ fea-
tures that are relevant to the domain of program optimization, AspectC++ has to support
all language features. It is intended to be a general-purpose aspect language.

6 Summary and Conclusions

The aim of this work was to investigate the combination of aspects with generic and
generative programming in AspectC++. We divided this large topic into mainly two di-
mensions of interest, namely using aspects to instrument generic code and using generic
code in aspects. We examined the relevant features of the C++ template language, used
this to derive the requirements to the AspectC++ language, and presented some de-
tails about their incorporation into our AspectC++ weaver19. We state that weaving
in template instances is not more than a consequent extension of the target scope of
aspects. However, providing advice code with additional context information to ex-
ploit the power of generic code and metaprograms significantly increases the expressive
power of aspect implementations as well as the “on-demand” applicability of template
metaprograms. The benefits of such generic advice were demonstrated by a case study
with a generative implementation of a cache policy. Other useful examples would in-
clude introspection, constraint checking or marshaling. Furthermore, we showed that
the application of such a policy as a generative aspect does not lead to a significant
performance overhead.

We also discussed if and how our insights on combining AOP with generic and
generative programming in AspectC++ are applicable to languages that offer a simi-
lar model for generic types. We concluded that support to weave in generic code and
basic support for generic advice is feasible in these languages, too, even though its
implementation into aspect weavers might be difficult. However, even if desirable, it
is unlikely that other languages will support the powerful combination of AOP with
template metaprogramming in near future. This is a unique feature of AspectC++.
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