
Documentation:
AspectC++ Language Reference

Olaf Spinczyk and

pure-systems GmbH

Version 2.2, March 10, 2017

(c) 2017 Olaf Spinczyk1 and pure-systems GmbH2

1os@aspectc.org
www.aspectc.org

2aspectc@pure-systems.com
www.pure-systems.com

Agnetenstr. 14
39106 Magdeburg

Germany

mailto:os@aspectc.org
http://www.aspectc.org
mailto:aspectc@pure-systems.com
http://www.pure-systems.com


(c) 2017 Olaf Spinczyk and pure-systems GmbH
All rights reserved.



CONTENTS CONTENTS

Contents

1 About 6

2 Basic Concepts 6
2.1 Pointcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Match Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Pointcut Expressions . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Types of Join Points . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Pointcut declarations . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Advice Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Introductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Advice Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Aspect Instantiation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Runtime Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.1 Support for Advice Code . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Match Expressions 19
3.1 Commonly Used Matching Mechanisms . . . . . . . . . . . . . . . . . 19

3.1.1 Name Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Scope Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Type Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Namespace and Class Match Expressions . . . . . . . . . . . . . . . 23
3.3 Function Match Expressions . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Operator Function and Conversion Function Name Matching . 27
3.3.2 Constructors and Destructors . . . . . . . . . . . . . . . . . . . 28

3.4 Variable Match Expressions . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Predefined Pointcut Functions 28
4.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



CONTENTS CONTENTS

4.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Built-in Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Supported And Not Supported Operators . . . . . . . . . . . . 36

4.6 Object Construction and Destruction . . . . . . . . . . . . . . . . . . . 39
4.7 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7.2 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.9 Algebraic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Attributes 43
5.1 Attribute declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Supported code-elements . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Attributes and pointcut expressions . . . . . . . . . . . . . . . . . . . . 45

6 Slices 45
6.1 Class Slice Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Advice 47
7.1 Advice for Dynamic Join Points . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Advice for Static Join Points . . . . . . . . . . . . . . . . . . . . . . . . 47

8 JoinPoint API 48
8.1 API for Dynamic Join Points . . . . . . . . . . . . . . . . . . . . . . . . 48

8.1.1 Types and Constants . . . . . . . . . . . . . . . . . . . . . . . . 48
8.1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.2 API for Static Join Points . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Advice Ordering 53
9.1 Aspect Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 Advice Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.3 Effects of Advice Precedence . . . . . . . . . . . . . . . . . . . . . . . 54

10 List of Examples 55

A Grammar 56

4



CONTENTS CONTENTS

B Match Expression Grammar 57

C Structure Of The Project Repository 61

D Project Repository File For Example on page 8 62

Index 66

5



2 BASIC CONCEPTS

1 About

This document is intended to be used as a reference book for the AspectC++ lan-
guage elements. It describes in-depth the use and meaning of each element provid-
ing examples. For experienced users the contents of this document are summarized
in the AspectC++ Quick Reference. Detailed information about the AspectC++ com-
piler ac++ can be looked up in the AspectC++ Compiler Manual.

AspectC++ is an aspect-oriented extension to the C++ language1. It is similar
to AspectJ2 but, due to the nature of C++, in some points completely different. The
first part of this document introduces the basic concepts of the AspectC++ language.
The in-depth description of each language element is subject of the second part.

2 Basic Concepts

2.1 Pointcuts

Aspects in AspectC++ implement crosscutting concerns in a modular way. With
this in mind the most important element of the AspectC++ language is the pointcut.
Pointcuts describe a set of join points by determining on which condition an aspect
shall take effect. Thereby each join point can either refer to a function, a type/class,
a variable, or a point from which a join point is accessed so that this condition can be
for instance the event of reaching a designated code position or the allocation of a
variable with a certain value. Depending on the kind of pointcuts, they are evaluated
at compile time or at runtime.

2.1.1 Match Expressions

There are two types of pointcuts in AspectC++: code pointcuts and name point-
cuts. Name pointcuts describe a set of (statically) known program entities like type-
s/classes, variables, functions, or namespaces. All name pointcuts are based on
match expressions. A match expression can be understood as a search pattern.
In such a search pattern the special character “%” is interpreted as a wildcard for
names or parts of a signature. The special character sequence “. . . ” matches any

1defined in the ISO/IEC 14882:1998(E) standard
2http://www.eclipse.org/aspectj/

6

http://www.aspectc.org/doc/ac-quickref.pdf
http://www.aspectc.org/doc/ac-compilerman.pdf
http://www.eclipse.org/aspectj/


2 BASIC CONCEPTS 2.1 Pointcuts

number of parameters in a function signature or any number of scopes in a qualified
name. A match expression is a quoted string.

Example: match expressions (name pointcuts)

"int C::%(...)"

matches all member functions of the class C that return an int

"%List"

matches any namespace, class, struct, union, or enum whose name ends with
List. In case of a matched namespace or class the match expression also
matches entities inside the namespace resp. class. For more information see
section 3.2.

"% printf(const char *, ...)"

matches the function printf (defined in the global scope) having at least one
parameter of type const char * and returning any type

"const %& ...::%(...)"

matches all functions that return a reference to a constant object

Match expressions select program entities with respect to their definition scope, their
type, and their name. A detailed description of the match expression semantics
follows in section 3 on page 19. The grammar which defines syntactically valid match
expressions is shown in appendix B on page 57.

2.1.2 Pointcut Expressions

The other type of pointcuts, the code pointcuts, describe an intersection through the
set of the points in the control flow of a program. A code pointcut can refer to a call
or execution point of a function, to a call of a built-in operator or and to write and read
points of member variables and global variables. They can only be created with the
help of name pointcuts because all join points supported by AspectC++ require at
least one name to be defined. This is done by calling predefined pointcut functions in
a pointcut expression that expect a pointcut as argument. Such a pointcut function is
for instance within(pointcut), which filters all join points that are within the functions
or classes in the given pointcut.

7



2.1 Pointcuts 2 BASIC CONCEPTS

Name and code pointcuts can be combined in pointcut expressions by using the
algebraic operators “&&”, “||”, and “!”.

Example: pointcut expressions

"%List" && !derived("Queue")

describes the set of classes with names that end with “List” and that are not
derived from the class Queue

call("void draw()") && within("Shape")

describes the set of calls to the function draw that are within methods of the
class Shape

2.1.3 Types of Join Points

According to the two types of pointcuts supported by AspectC++ there are also two
coarse types of join points: name join points and code join points. As diagramed in
figure 1 both of these have sub join point types. The types Any, Name, Code and
Access are abstract types and exist just for categorizing the other join point types.

Any

jpid: int

Name

name: string

builtin: bool

Code

 

Namespace

 

Function

kind: FunctionType

variadic_args: bool

cv_qualifiers: CVQualifiers

Variable

kind: VariableType

Class

 

ClassSlice

is_struct: bool

Access

lid: int

target_object_lid: int

cfg_block_lid: int

Execution

 

Construction

 

Destruction

 

Get

 

Set

 

Call

default_args: int

Builtin

 

Ref

 

GetRef

kind: VariableType

SetRef

kind: VariableType

CallRef

kind: VariableType

Figure 1: join point type hierarchy

Figure 1 is extracted from the AspectC++ project repository hierarchy, that can be
found in appendix C.

Based on a short code fragment the differences and relations between the types
of join points shall be clarified.

8



2 BASIC CONCEPTS 2.1 Pointcuts

1 class Shape { /*...*/ };

2 void draw(Shape& shape) { /*...*/ }

3

4 namespace Circle {

5 typedef int PRECISION;

6

7 class S_Circle : public Shape {

8 PRECISION m_radius;

9 public:

10 void radius(PRECISION r) {

11 m_radius = r;

12 }

13 ~S_Circle() { /*...*/ }

14 };

15

16 void draw(PRECISION r) {

17 S_Circle circle;

18 circle.radius(r);

19 draw(circle);

20 }

21 }

22

23 int main() {

24 Circle::draw(10);

25 return 0;

26 }

Code join points are used to form code pointcuts and name join points
(i.e. names) are used to form name pointcuts. Figure 2 on the next page shows
join points of the code fragment above and how they correlate. Built-in constructors,
destructors and uncalled operators are not shown. Additionally appendix D shows
the contents of the project repository3 for the code fragment.

3The AspectC++ project repository is a file, that contains the internal AspectC++ model as xml-
tree. The actual style and format of the content may change at any time. For more information see
the AspectC++ Compiler Manual.

9



2.1 Pointcuts 2 BASIC CONCEPTS

Figure 2: join points and their relations

Every execution join point is associated with the name of an executable function.
Pure virtual functions are not executable. Thus, advice code for execution join points
would never be triggered for this kind of function. However, the call of such a function,
i.e. a call join point with this function as target, is absolutely possible. Furthermore
there are no execution join points for built-in operator functions.

Every call or builtin join point is associated with two names: the name of the
source and the target function (in case of builtin this is the global built-in operator
function) of a function call. As there can be multiple function calls within the same
function, each function name can be associated with a list of call join points and
builtin join points. The same holds for set and get join points, which represent
write resp. read operations on data members or global variables. Each of these join
points is associated with the name of the function that contains the join point and
the name of the accessed member variable or global variable. A construction join
point means the class specific instruction sequence executed when an instance is
created. In analogy, a destruction join point means the object destruction.

2.1.4 Pointcut declarations

AspectC++ provides the possibility to name pointcut expressions with the help of
pointcut declarations. This makes it possible to reuse pointcut expressions in dif-

10



2 BASIC CONCEPTS 2.2 Attributes

ferent parts of a program. They are allowed where C++ declarations are allowed.
Thereby the usual C++ name lookup and inheritance rules are also applicable for
pointcut declarations.

A pointcut declaration is introduced by the keyword pointcut.

Example: pointcut declaration

pointcut lists() = derived("List");

lists can now be used everywhere in a program where a pointcut expression
can be used to refer to derived("List")

Furthermore pointcut declarations can be used to define pure virtual pointcuts. This
enables the possibility of having re-usable abstract aspects that are discussed in
section 2.5. The syntax of pure virtual pointcut declarations is the same as for usual
pointcut declarations except the keyword virtual following pointcut and that the
pointcut expression is “0”.

Example: pure virtual pointcut declaration

pointcut virtual methods() = 0;

methods is a pure virtual pointcut that has to be redefined in a derived aspect
to refer to the actual pointcut expression

2.2 Attributes

Based on the C++11 attribute syntax AspectC++ provides an annotation mechanism
for join points4. All join points annotated with the same attribute “a”, e.g. class

[[a]] C {...}, can be referred to in a pointcut expression as a(). Further infor-
mation can be found in section 5.

2.3 Slices

A slice is a fragment of a C++ language element that defines a scope. It can be used
by advice to extend the static structure of the program. For example, the elements of
a class slice can be merged into one or more target classes by introduction advice.
The following example shows a simple class slice declaration.

4In other languages this mechanism is known as “annotations”.

11



2.4 Advice Code 2 BASIC CONCEPTS

Example: class slice declaration

slice class Chain {

Chain *_next;

public:

Chain *next () const { return _next; }

};

2.4 Advice Code

To a code join point so-called advice code can be bound. Advice code can be un-
derstood as an action activated by an aspect when a corresponding code join point
in a program is reached. The activation of the advice code can happen before, af-
ter, or before and after the code join point is reached. The AspectC++ language
element to specify advice code is the advice declaration. It is introduced by the
keyword advice followed by a pointcut expression defining where and under which
conditions the advice code shall be activated.

Example: advice declaration

advice execution("void login(...)") : before() {

cout << "Logging in." << endl;

}

The code fragment :before() following the pointcut expression determines that
the advice code shall be activated directly before the code join point is reached. It
is also possible here to use :after() which means after reaching the code join
point respectively :around() which means that the advice code shall be executed
instead of the code described by the code join point. In an around advice the advice
code can explicitly trigger the execution of the program code at the join point so that
advice code can be executed before and after the join point. There are no special
access rights of advice code regarding to program code at a join point.

Beside the pure description of join points pointcuts can also bind variables to
context information of a join point. Thus for instance the actual argument values of a
function call can be made accessible to the advice code.

12



2 BASIC CONCEPTS 2.4 Advice Code

Example: advice declaration with access to context information

pointcut new_user(const char *name) =

execution("void login(...)") && args(name);

advice new_user(name) : before(const char *name) {

cout << "User " << name << " is logging in." << endl;

}

In the example above at first the pointcut new_user is defined including a con-
text variable name that is bound to it. This means that a value of type const

char* is supplied every time the join point described by the pointcut new_user
is reached. The pointcut function args used in the pointcut expression delivers all
join points in the program where an argument of type const char* is used. There-
fore args(name) in touch with the execution join point binds name to the first and
only parameter of the function login.

The advice declaration in the example above following the pointcut declaration
binds the execution of advice code to the event when a join point described in
new_user is reached. The context variable that holds the actual value of the param-
eter of the reached join point has to be declared as a formal parameter of before,
after, or around. This parameter can be used in the advice code like an oridinary
function parameter.

Beside the pointcut function args the binding of context variables is performed
by that, target, and result. At the same time these pointcut functions act as
filters corresponding to the type of the context variable. For instance args in the
example above filters all join points having an argument of type const char*.

2.4.1 Introductions

The second type of advice supported by AspectC++ are the introductions. Intro-
ductions are used to extend program code and data structures in particular. The
following example extends two classes each by a member variable and a member
function.

Example: introductions

pointcut shapes() = "Circle" || "Polygon";

advice shapes() : slice class {

13



2.4 Advice Code 2 BASIC CONCEPTS

bool m_shaded;

void shaded(bool state) {

m_shaded = state;

}

};

Like an ordinary advice declaration an introduction is introduced by the keyword
advice. If the following pointcut is a name pointcut the slice declaration following
the token “:” is introduced in the classes and aspects described by the pointcut.
Introduced code can then be used in normal program code like any other member
function, member variable, etc. Advice code in introductions has full access rights
regarding to program code at a join point, i.e. a method introduced in a class has
access even to private members of that class.

Slices can also be used to introduce new base classes. In the first line of the
following example it is made sure that every class with a name that ends with “Object”
is derived from a class MemoryPool. This class may implement an own memory
management by overloading the new and delete operators. Classes that inherit
from MemoryPool must redefine the pure virtual method release that is part of the
implemented memory management. This is done in the second line for all classes in
the pointcut.

Example: base class introduction

advice "%Object" : slice class : public MemoryPool {

virtual void release() = 0;

}

2.4.2 Advice Ordering

If more than one advice affects the same join point it might be necessary to define
an order of advice execution if there is a dependency between the advice codes
(“aspect interaction”). The following example shows how the precedence of advice
code can be defined in AspectC++.

Example: advice ordering

advice call("% send(...)") : order("Encrypt", "Log");

14



2 BASIC CONCEPTS 2.5 Aspects

If advice of both aspects (see 2.5) Encrypt and Log should be run when the func-
tion send(...) is called this order declaration defines that the advice of Encrypt
has a higher precedence. More details on advice ordering and precedence can be
found in section 9 on page 53.

2.5 Aspects

The aspect is the language element of AspectC++ to collect introductions and ad-
vice code implementing a common crosscutting concern in a modular way. This put
aspects in a position to manage common state information. They are formulated
by means of aspect declarations as a extension to the class concept of C++. The
basic structure of an aspect declaration is exactly the same as an usual C++ class
definition, except for the keyword aspect instead of class, struct or union. Ac-
cording to that, aspects can have member variables and member functions and can
inherit from classes and even other aspects.

Example: aspect declaration

aspect Counter {

static int m_count;

pointcut counted() = "Circle" || "Polygon";

advice counted() : slice struct {

class Helper {

Helper() { Counter::m_count++; }

} m_counter;

};

advice execution("% main(...)") : after() {

cout << "Final count: " << m_count << " objects"

<< endl;

}

};

... and at an appropriate place

#include "Counter.ah"

int Counter::m_count = 0;

15



2.5 Aspects 2 BASIC CONCEPTS

In this example the count of object instantiations for a set of classes is determined.
Therefore, a member variable m_counter is introduced into the classes described
by the pointcut incrementing a global counter on construction time. By applying
advice code for the function main the final count of object instantiations is displayed
when the program terminates.

This example can also be rewritten as an abstract aspect that can for instance be
archived in an aspect library for the purpose of reuse. It only require to reimplement
the pointcut declaration to be pure virtual.

Example: abstract aspect

aspect Counter {

static int m_count;

Counter() : m_count(0) {}

pointcut virtual counted() = 0;

...

};

It is now possible to inherit from Counter to reuse its functionality by reimplementing
counted to refer to the actual pointcut expression.

Example: reused abstract aspect

aspect MyCounter : public Counter {

pointcut counted() = derived("Shape");

};

2.5.1 Aspect Instantiation

By default aspects in AspectC++ are automatically instantiated as global objects.
The idea behind it is that aspects can also provide global program properties and
therefore have to be always accessible. However in some special cases it may be
desired to change this behavior, e.g. in the context of operating systems when an
aspect shall be instantiated per process or per thread.

The default instantiation scheme can be changed by defining the static method
aspectof resp. aspectOf that is otherwise generated for an aspect. This method
is intended to be always able to return an instance of the appropriate aspect.

16



2 BASIC CONCEPTS 2.6 Runtime Support

Example: aspect instantiation using aspectof

aspect ThreadCounter : public Counter {

pointcut counted() = "Thread";

advice counted() : ThreadCounter m_instance;

static ThreadCounter *aspectof() {

return tjp->target()->m_instance;

}

};

The introduction of m_instance into Thread guarantees that every thread object
has an instance of the aspect. By calling aspectof it is possible to get this instance
at any join point which is essential for accessing advice code and members of the
aspect. For this purpose code in aspectof has full access to the actual join point
in a way described in the next section.

2.6 Runtime Support

2.6.1 Support for Advice Code

For many aspects access to context variables may not be sufficient to get enough
information about the join point where advice code was activated. For instance a
control flow aspect for a complete logging of function calls in a program would need
information about function arguments and its types on runtime to be able to produce
a type-compatible output.

In AspectC++ this information is provided by the members of the class
JoinPoint (see table below).

types:
Result result type
That object type
Target target type

AC::Type encoded type of an object
AC::JPType join point types

static methods:
int args() number of arguments

AC::Type type() typ of the function or attribute

17



2.6 Runtime Support 2 BASIC CONCEPTS

AC::Type argtype(int) types of the arguments
const char *signature() signature of the function or variable

unsigned id() identification of the join point
AC::Type resulttype() result type
AC::JPType jptype() type of join point

non-static methods:
void *arg(int) actual argument
Result *result() result value
That *that() object referred to by this

Target *target() target object of a call
void proceed() execute join point code

AC::Action &action() Action structure

Table 1: API of class JoinPoint available in advice code

Types and static methods of the JoinPoint API deliver information that is the
same for every advice code activation. The non-static methods deliver information
that differ from one activation to another. These methods are accessed by the object
tjp resp. thisJoinPoint which is of type JoinPoint and is always available in
advice code, too.

The following example illustrates how to implement a re-usable control flow as-
pect using the JoinPoint API.

Example: re-usable trace aspect

aspect Trace {

pointcut virtual methods() = 0;

advice execution(methods()) : around() {

cout << "before " << JoinPoint::signature() << "(";

for (unsigned i = 0; i < JoinPoint::args(); i++)

printvalue(tjp->arg(i), JoinPoint::argtype(i));

cout << ")" << endl;

tjp->proceed();

cout << "after" << endl;

}

};

18



3 MATCH EXPRESSIONS

This aspect weaves tracing code into every function specified by the virtual point-
cut redefined in a derived aspect. The helper function printvalue is responsible
for the formatted output of the arguments given at the function call. After calling
printvalue for every argument the program code of the actual join point is exe-
cuted by calling proceed on the JoinPoint object. The functionality of proceed
is achieved by making use of the so-called actions.

2.6.2 Actions

In AspectC++ an action is the statement sequence that would follow a reached
join point in a running program if advice code would not have been activated.
Thus tjp->proceed() triggers the execution of the program code of a join point.
This can be the call or execution of a function as well as the writing or reading
of member variables or global variables. The actions concept is realized in the
AC::Action structure. In fact, proceed is equivalent to action().trigger()

so that tjp->proceed() may also be replaced by tjp->action().trigger().
Thereby the method action() of the JoinPoint API returns the actual action
object for a join point.

3 Match Expressions

Match expressions are a used to describe a set of statically known program enti-
ties in a C++ source code. These program entities correspond to name join points.
Therefore a match expression always returns a name pointcut. There can be match
expressions for namespaces, classes, functions or variables.

3.1 Commonly Used Matching Mechanisms

This section describes matching mechanisms that are used in match expressions
listed in sections 3.2 to 3.4.

The grammar used for match expression parsing is shown in appendix B on
page 57. The following subsections separately describe the name, scope, and type
matching mechanisms. All of them are used in match expressions of functions and
variables, while match expressions of namespaces and classes only uses name and
scope matching.

19



3.1 Commonly Used Matching Mechanisms 3 MATCH EXPRESSIONS

3.1.1 Name Matching

Name matching is trivial as long as the compared name is a normal C++ identifier.
If the name pattern does not contain the special wildcard character %, it matches
a name only if it is exactly the same. Otherwise each wildcard character matches
an arbitrary sequence of characters in the compared name. The wildcard character
also matches an empty sequence.

Example: simple name patterns
Token only matches Token
% matches any name
parse_% matches any name beginning with parse_ like

parse_declarator or parse_
parse_%_id% matches names like parse_type_id,

parse_private_identifier, etc.
%_token matches all names that end with _token like

start_token, end_token, and _token

3.1.2 Scope Matching

Restrictions on definition scopes can be described by scope patterns. This is a
sequence of name patterns (or the special any scope sequence pattern ...), which
are separated by ::, like in Puma::...::. A scope pattern always ends with ::

and should never start with ::, because scope patterns are interpreted relative to
the global scope anyway5. The definition scope can either be a namespace or a
class.

A scope pattern matches the definition scope of a compared function or type if
every part can successfully be matched with a corresponding part in the qualified
name of the definition scope. The compared qualified name has to be relative to
the global scope and should not start with ::, which is optional in a C++ nested-
name-specifier. The special ... pattern matches any (even empty) sequence of
scope names. If no scope pattern is given, a compared namespace, class, function
or variable has to be defined in the global scope to be matched.

5This restriction is also needed to avoid ambiguities in the match expression grammar: Does
“A :: B :: C(int)” mean “A ::B::C(int)” or “A::B ::C(int)”?

20



3 MATCH EXPRESSIONS 3.1 Commonly Used Matching Mechanisms

Example: scope patterns
...:: matches any definition scope, even the global scope
Puma::CCParser:: matches the scope Puma::CCParser exactly
...::%Compiler%:: matches any class or namespace, which matches the

name pattern %Compiler%, in any scope
Puma::...:: matches any scope defined within the class or names-

pace Puma and Puma itself

3.1.3 Type Matching

C++ types can be represented as a tree. For example, the function type
int(double) is a function type node with two children, one is an int node, the
other a double node. Both children are leaves of the tree.

The types used in match expressions can also be interpreted as trees. As an
addition to normal C++ types they can also contain the % wildcard character, name
patterns, and scope patterns. A single wildcard character in a type pattern becomes
a special any type node in the tree representation.

For comparing a type pattern with a specific type the tree representation is used
and the any type node matches an arbitrary type (sub-)tree.

Example: type patterns with the wildcard character
% matches any type
void (*)(%) matches any pointer type that points to functions with a sin-

gle argument and a void result type
%* matches any pointer type

Matching of Named Types
Type patterns may also contain name and scope patterns. They become a named

type node in the tree representation and match any union, struct, class, or enumera-
tion type if its name and scope match the given pattern (see section 3.1.1 and 3.1.2).

Matching of “Pointer to Member” Types
Patterns for pointers to members also contain a scope pattern, e.g.

% (Puma::CSyntax::*)(). In this context the scope pattern is mandatory. The
pattern is used for matching the class associated with a pointer to member type.

21



3.1 Commonly Used Matching Mechanisms 3 MATCH EXPRESSIONS

Matching of Qualified Types (const/volatile)
Many C++ types can be qualified as const or volatile. In a type pattern these

qualifier can also be used, but they are interpreted restrictions. If no const or
volatile qualifier is given in a type pattern, the pattern also matches qualified
types6.

Example: type patterns with const and volatile
% matches any type, even types qualified with

const or volatile
const % matches only types qualified by const
% (*)() const volatile matches the type of all pointers to functions that

are qualified by const and volatile

Handling of Conversion Function Types
The result type of conversion functions is interpreted as a special undefined type

in type patterns as well as in compared types. The undefined type is only matched
by the any type node and the undefined type node.

Ellipses in Function Type Patterns
In the list of function argument types the type pattern ... can be used to match

an arbitrary (even empty) list of types. The ... pattern should not be followed by
other argument type patterns in the list of argument types.

Matching Virtual Functions
The decl-specifier-seq of a function type match expression may include the key-

word virtual. In this case the function type match expression only matches virtual
or pure virtual member functions. As const and volatile, the virtual keyword is
regarded as a restriction. This means that a function type match expression without
virtual matches virtual and non-virtual functions.

6Matching only non-constant or non-volatile types can be achieved by using the operators ex-
plained in section 4.9 on page 43. For example, !"const %" describes all types which are not
constant.

22



3 MATCH EXPRESSIONS 3.2 Namespace and Class Match Expressions

Example: type patterns with virtual
virtual % ...::%(...) matches all virtual or pure virtual functions in any

scope
% C::%(...) matches all member functions of C, even if they

are virtual

Matching Static Functions
Matching static functions works similar as matching virtual functions. The decl-

specifier-seq of a function type match expression may include the keyword static.
In this case the function type match expression only matches static functions in
global or namespace scope and static member functions of classes. As const and
volatile, the static keyword is regarded as a restriction. This means that a func-
tion type match expression without static matches static and non-static functions.

Example: type patterns with static
static % ...::%(...) matches all static member and non-member

functions in any scope
% C::%(...) matches all member functions of C, even if they

are static

Argument Type Adjustment
Argument types in type patterns are adjusted according to the usual C++ rules,

i.e. array and function types are converted to pointers to the given type and
const/volatile qualifiers are removed. Furthermore, argument type lists con-
taining a single void type are converted into an empty argument type list.

3.2 Namespace and Class Match Expressions

For namespaces and classes the matching process is special because it consists of
two steps.

First, each namespace and class is compared with a given match expression. A
match expression that matches a namespace or class begins with the optional scope

23



3.2 Namespace and Class Match Expressions 3 MATCH EXPRESSIONS

part and ends with the required name part. In course of this step the matching name
join points are collected in a temporary pointcut.

Example: scope and name parts of a namespace or class match expression

"Puma::...::Parser%"

This match expression describes the following requirements on a compared names-
pace or class:

scope: the scope in which the namespace or class is defined has to match
Puma::...::

name: the name of the namespace or class has to match the name pattern
Parser%

For more information about these parts see sections Scope Matching (3.1.2) and
Name Matching (3.1.1).

In the second step the temporary pointcut will be extended by contained name
join points yielding the result pointcut. The extension rules are as follows:

• If a namespace N is matched, the resulting pointcut additionally contains the
following name join points:
all functions, variables, (nested) classes, member functions, data members,
constructors and destructors that are anywhere and arbitrary nested inside N.

• If a class C is matched, the resulting pointcut additionally contains the following
name join points:
all member functions, data members and constructors of C as well as the de-
structor of C that are directly located inside C. So name join points that are
nested inside a member function, a data member or a nested class are not
added to the pointcut.

The following list contains example match expressions and the results after the first
as well as after the second step.

24



3 MATCH EXPRESSIONS 3.2 Namespace and Class Match Expressions

after step one result
Token only matches namespaces

or classes with the name
Token that are directly in-
side the global namespace

step one extended as de-
scribed in step two

...::Token matches Token at arbi-
trary location

step one extended as de-
scribed in step two

% matches any namespace
or class that is directly lo-
cated in the global names-
pace but not the global
namespace itself

matches any namespace
except the global names-
pace, any class that is
arbitrary nested in a non-
global namespace, any class
directly located in the global
namespace and all functions,
member functions, variables,
data members, constructors
and destructors that are
contained in one of the just
mentioned entities

:: matches the global names-
pace

matches any function, vari-
able, (nested) class, member
function, data member, con-
structor or destructor

25



3.3 Function Match Expressions 3 MATCH EXPRESSIONS

after step one result
OOStuBS::CGA% matches any namespace or

class inside OOStuBS beginning
with CGA like OOStuBS::CGA,

OOStuBS::CGA_Screen or
OOStuBS::CGA_Stream. Note
that this matches OOStuBS only
inside the global namespace.

step one extended
as described in step
two

%::Smtp%Bldr% matches namespaces and
classes like SmtpBldr,

SmtpClientBldr or
SmtpServerBldrCreator,
that are nested in exact one
namespace or class.

step one extended
as described in step
two

%Node matches any namespace or
class ending with Node like
ModelNode, GraphNode and
Node

step one extended
as described in step
two

Please note that local classes inside functions or member functions are never
matched.

3.3 Function Match Expressions

For function (or member function) matching a match expression is internally decom-
posed into the function type pattern, the scope pattern, and the name pattern.

Example: type, scope, and name parts of a function match expression

"const % Puma::...::parse_% (Token *)"

This match expression describes the following requirements on a compared function
name:

name: the function name has to match the name pattern parse_%

scope: the scope in which the function is defined has to match Puma::...::

26



3 MATCH EXPRESSIONS 3.3 Function Match Expressions

type: the function type has to match const %(Token *)

If an entity matches all parts of the match expression, it becomes an element of the
pointcut, which is defined and returned by the match expression.

Common descriptions of name, scope and type matching can be found in sec-
tion 3.1. The following sections additionally describe the name matching of special
functions.

3.3.1 Operator Function and Conversion Function Name Matching

The name matching mechanism is more complicated if the pattern is compared with
the name of a conversion function or an operator function. Both are matched by the
name pattern %. However, with a different name pattern than % they are only matched
if the pattern begins with "operator ". The pattern "operator %" matches any
operator function or conversion function name.

C++ defines a fixed set of operators which are allowed to be overloaded. In
a name pattern the same operators may be used after the "operator " prefix to
match a specific operator function name. Operator names in name patterns are not
allowed to contain the wildcard character. For ambiguity resolution the operators %

and %= are matched by %% and %%= in a name pattern.

Example: operator name patterns
operator % matches any operator function name (as well as any con-

version function name)
operator += matches only the name of a += operator
operator %% matches the name of an operator %

Conversion functions don’t have a real name. For example, the conversion func-
tion operator int*() defined in a class C defines a conversion from a C instance
into an object of type int*. To match conversion functions the name pattern may
contain a type pattern after the prefix "operator ". The type matching mechanism
is explained in section 3.1.3.

Example: conversion function name patterns

27



3.4 Variable Match Expressions 4 PREDEFINED POINTCUT FUNCTIONS

operator % matches any conversion function name
operator int* matches any name of a conversion that converts something

into an int* object
operator %* matches any conversion function name if that function con-

verts something into a pointer

3.3.2 Constructors and Destructors

Name patterns cannot be used to match constructor or destructor names.

3.4 Variable Match Expressions

For variable (or member) matching a match expression is internally decomposed into
the variable type pattern, the scope pattern, and the name pattern.

Example: type, scope, and name parts of a variable match expression

"const % Puma::...::parsed_%"

This match expression describes the following requirements on a compared variable
name:

name: the variable name has to match the name pattern parsed_%

scope: the scope in which the variable is defined has to match Puma::...::

type: the variable type has to match const %

If an entity matches all parts of the match expression, it becomes an element of the
pointcut, which is defined and returned by the match expression.

Descriptions of name, scope and type matching can be found in section 3.1.

4 Predefined Pointcut Functions

On the following pages a complete list of the pointcut functions supported by As-
pectC++ is presented. For every pointcut function it is indicated which type of point-
cut is expected as argument(s) and of which type the result pointcut is. Thereby “N”

28



4 PREDEFINED POINTCUT FUNCTIONS 4.1 Types

stands for name pointcut and “C” for code pointcut. The optionally given index is
an assurance about the type of join point(s) described by the result pointcut7. If a
pointcut is used as argument of a pointcut function and the type of some join points
in argument pointcut does not match one of the expected argument types of the
pointcut function, these non-matching join points are silently ignored.

4.1 Types

base(pointcut) NC,F,V→NC,F,V

returns a pointcut pb of name join points created as follows
pb←{all base classes of classes in pointcut but not the classes in pointcut},
pb← pb ||{all member functions and data members of classes in pb},
pb ← pb ||{all previous definitions of member functions in pointcut but not the
member functions in pointcut},
pb← pb ||{all previous definitions of data members in pointcut but not the data
members in pointcut}

derived(pointcut) NC,F,V→NC,F,V

returns a pointcut pd of name join points created as follows
pd ←{all classes in pointcut and all classes derived from them},
pd ← pd ||{all member functions and data members of classes in pd},
pd ← pd ||{all member functions in pointcut and all redefinitions of these mem-
ber functions in derived classes},
pd← pd ||{all data members in pointcut and all redefinitions of these data mem-
bers in derived classes}

Example: derived function matching

struct A {};

struct B : public A { void f(); };

struct C : public B { void f(); };

aspect Z {

7C, CC, CE, CB, CS, CG: Code (any, only Call (without Builtin), only Execution, only Builtin, only
Set, only Get); N, NN , NC, NF , NT NV : Names (any, only Namespace, only Class, only Function, only
Type, only Variable)

29



4.2 Control Flow 4 PREDEFINED POINTCUT FUNCTIONS

advice execution(derived("A")) : before() {

// before execution of B::f() or C::f()

}

};

Example: type matching

A software may contain the following class hierarchy.

class Shape { ... };

class Scalable { ... };

class Point : public Shape { ... };

...

class Rectangle : public Line, public Rotatable { ... };

With the following aspect a special feature is added to a designated set of classes of
this class hierarchy.

aspect Scale {

pointcut scalable() = "Rectangle" ||

(base("Rectangle") && derived("Point"));

advice "Point" : slice class : public Scalable;

advice scalable() : slice class {

void scale(int value) { ... }

};

};

The pointcut describes the classes Point and Rectangle and all classes derived
from Point that are direct or indirect base classes of Rectangle. With the first
advice Point gets a new base class. The second advice adds a corresponding
method to all classes in the pointcut.

4.2 Control Flow

cflow(pointcut) C→C
captures join points occurring in the dynamic execution context of join points in
pointcut. Currently the language features being used in the argument pointcut

30



4 PREDEFINED POINTCUT FUNCTIONS 4.2 Control Flow

are restricted. The argument is not allowed to contain any context variable
bindings (see 4.8) or other pointcut functions which have to be evaluated at
runtime like cflow(pointcut) itself.

Example: control flow dependant advice activation

The following example demonstrates the use of the cflow pointcut function.

class Bus {

void out (unsigned char);

unsigned char in ();

};

Consider the class Bus shown above. It might be part of an operating system kernel
and is used there to access peripheral devices via a special I/O bus. The execution
of the member functions in() and out() should not be interrupted, because this
would break the timing of the bus communication. Therefore, we decide to implement
an interrupt synchronization aspect that disables interrupts during the execution of
in() and out():

aspect BusIntSync {

pointcut critical() = execution("% Bus::%(...)");

advice critical() && !cflow(execution("% os::int_handler()

")) : around() {

os::disable_ints();

tjp->proceed();

os::enable_ints();

}

};

As the bus driver code might also be called from an interrupt handler, the inter-
rupts should not be disabled in any case. Therefore, the pointcut expression exploits
the cflow() pointcut function to add a runtime condition for the advice activation. The
advice body should only be executed if the control flow did not come from the inter-
rupt handler os::int_handler(), because it is not interruptable by definition and
os::enable_ints() in the advice body would turn on the interrupts too early.

31



4.3 Scope 4 PREDEFINED POINTCUT FUNCTIONS

4.3 Scope

within(pointcut) N→C
returns all code join points that are located directly inside or at a name join
point in pointcut

member(pointcut) N→N
maps the scopes given in pointcut to any contained named entities. Thus a
class name for example is mapped to all contained member functions, variables
and nested types.

Example: matching in scopes

aspect Logger {

pointcut calls() =

call("void transmit()") && within("Transmitter");

advice calls() : around() {

cout << "transmitting ... " << flush;

tjp->proceed();

cout << "finished." << endl;

}

};

This aspect inserts code logging all calls to transmit that are within the methods
of class Transmitter.

4.4 Functions

call(pointcut) NF→CC

returns all code join points where a user provided function or member function
in pointcut is called. The resulting join points are located in the scope of the
resp. caller meaning where the function or member functions is called. The
pointcut does not include join points at calls to built-in operators.

execution(pointcut) NF→CE

returns all code join points where a function or member function in pointcut
is executed. The resulting join points are located in the scope of the callee
meaning where the function or member function is defined/implemented.

32



4 PREDEFINED POINTCUT FUNCTIONS 4.5 Built-in Operators

Example: function matching

The following aspect weaves debugging code into a program that checks whether a
method is called on a null pointer and whether the argument of the call is null.

aspect Debug {

pointcut fct() = "% MemPool::dealloc(void*)";

pointcut exec() = execution(fct());

pointcut calls() = call(fct());

advice exec() && args(ptr) : before(void *ptr) {

assert(ptr && "argument is NULL");

}

advice calls() : before() {

assert(tjp->target() && "’this’ is NULL");

}

};

The first advice provides code to check the argument of the function dealloc

before the function is executed. A check whether dealloc is called on a null object
is provided by the second advice. This is realized by checking the target of the call.

4.5 Built-in Operators

builtin(pointcut) NF→CB

returns all code join points where a built-in operator in pointcut is called.
This pointcut function does not return join points at constructor or destructor
calls. See section Object Construction and Destruction (4.6) to find out how to
describe these join points.
The builtin pointcut function is a new feature that was introduced in ver-
sion 2.0 and is therefore not enabled by default to avoid compatibility issues
(e.g., if someone named a pointcut “builtin”). The --builtin_operators

command-line argument enables the described functionality.

The intersection of the results of call and builtin always yields the empty pointcut:
call(pointcut) && builtin(pointcut) = ∅ ∀pointcut

33



4.5 Built-in Operators 4 PREDEFINED POINTCUT FUNCTIONS

Example: operator matching

The following aspect weaves code into a program that checks whether a null-pointer
will be dereferenced. If this occurs, the advice will provide the code position on the
error stream.

aspect ProblemReporter {

advice builtin("% operator *(%)") : before() {

if(*tjp->arg<0>() == 0) {

cerr << tjp->filename() << " (Line " << tjp->line() <<

"): dereferencing of null-pointer!" << endl;

}

}

};

4.5.1 Limitations

Some built-in operators could not be fully supported. For example, weaving advice
code for built-in operators in constant expressions would destroy the constancy of
the expressions and inhibit evaluation at compile time. Therefore, operators in con-
stant expressions are not matched. The following code listing gives some examples
for operators in constant expressions.

class ExampleClass {

static const int const_member = 5 * 2;

unsigned int bitfield : 4 / 2;

};

const int const_two = 3 - 1;

static char char_array[const_two + 5];

enum ExampleEnum {

ENUM_VALUE = const_two + 1

};

switch(const int const_temp = 1) {

case const_temp + 1: {

// ...

break;

}

34



4 PREDEFINED POINTCUT FUNCTIONS 4.5 Built-in Operators

}

A further limitation results from the fact, that the C++-standard forbids pointers
and references to bit-fields. Thus all operators that refer to a bit-field (e.g. the
assignment- or increment-/decrement-operator needs a reference as first argument)
are not supported.

Moreover any operator that has an anonymous/unnamed or local type or a
type with no linkage as argument or result is not supported (because these types
shall not be used as a template argument which makes weaving impossible in most
cases).

Additionally postfix increment/decrement operators have a second implicit
argument of type int to distinguish between pre- and postfix operators. So e.g.
“% operator ++(%, int)” matches the postfix increment operator and “%

operator ++(%)” matches the prefix increment operator.

Also the address-of operator & is not supported, if the argument is a data
member or member function, because these types do not exist as type of a variable.

Furthermore the C++-standard states that if the result of .* or ->* is a func-
tion, that result can be used only as the operand for the function call operator
(). Therefore the pointer to member operators .* and ->* that get a member
function pointer as second argument are not supported, because a caching of the
result is not possible.

At last there are some limitations with the short-circuiting operators &&, ||

and ?:. If the second or third argument is not evaluated, tjp->args() will return
a null-pointer for the corresponding argument. Additionally the result of the args
pointcut function (see 4.8) is determined at runtime, if an short-circuit argument
is bound with the args pointcut function . Thus the advice code in the following
example is only executed, if the first argument evaluates to true so that the second
argument is available. In case of || the first argument have to be false to make
the second argument available and in case of ?: the first argument makes the
decision about the availability of the second resp. third argument.

35



4.5 Built-in Operators 4 PREDEFINED POINTCUT FUNCTIONS

advice builtin("% operator &&(bool, bool)") && args("%", b2)

: before(bool b2) {

// advice code

}

A complete list with all limitations and not supported operators can be found in
the next section 4.5.2.

4.5.2 Supported And Not Supported Operators

This section contains information about the builtin pointcut function in terms of sup-
ported operators.
Table 2 shows all operators that are fully or partly supported and indicates the spe-
cial characteristics of these operators, if available. For more information see section
4.5.1.
Table 3 shows not supported operators.

operator and example special characteristics
unary ++ a++ postfix operator (second argument of type int)
unary -- a-- postfix operator (second argument of type int)
unary ++ ++a prefix operator; not supported if a is a bit-field
unary -- --a prefix operator; not supported if a is a bit-field
unary & &a not supported if a is a member
unary * *a

unary + +a

unary - -a

unary ∼ ∼a
unary ! !a

binary .* a.*b not supported if b is a member function pointer
binary ->* a->*b not supported if b is a member function pointer
binary * a*b

binary / a/b

binary % a%b in match expressions: escape % with %%

binary + a+b

binary - a-b

continuation on next page...

36



4 PREDEFINED POINTCUT FUNCTIONS 4.5 Built-in Operators

operator and example special characteristics
binary << a<<b

binary >> a>>b

binary < a<b

binary > a>b

binary <= a<=b

binary >= a>=b

binary == a==b

binary != a!=b

binary & a&b

binary ˆ aˆb

binary | a|b

binary && a&&b limitations due to short-circuit evaluation (see 4.5.1)
binary || a||b limitations due to short-circuit evaluation (see 4.5.1)
binary = a=b copy-assignment not supported;

not supported if a is a bit-field
binary *= a*=b not supported if a is a bit-field
binary /= a/=b not supported if a is a bit-field
binary %= a%=b in match expressions: escape %= with %%=;

not supported if a is a bit-field
binary += a+=b not supported if a is a bit-field
binary -= a-=b not supported if a is a bit-field
binary <<= a<<=b not supported if a is a bit-field
binary >>= a>>=b not supported if a is a bit-field
binary &= a&=b not supported if a is a bit-field
binary |= a|=b not supported if a is a bit-field
binary ˆ= aˆ=b not supported if a is a bit-field
binary [] a[b]

ternary ?: a?b:c limitations due to short-circuit evaluation (see 4.5.1)

Table 2: operators that are (partly) supported by the builtin pointcut function

37



4.5 Built-in Operators 4 PREDEFINED POINTCUT FUNCTIONS

38



4 PREDEFINED POINTCUT FUNCTIONS4.6 Object Construction and Destruction

operator and example
binary , a,b

binary -> a->b

binary . a.b

new new a

delete delete a

new[] new[] a

delete[] delete[] a

implicit conversions
operators in constant expressions (see 4.5.1)

operators with an anonymous/unnamed or local type (see 4.5.1)
operators that have a type with no linkage (see 4.5.1)

Table 3: operators that are not supported by the builtin pointcut function

4.6 Object Construction and Destruction

construction(pointcut) NC→CCons

returns all code join points where an instance of a class in pointcut is con-
structed. The construction join point begins after all base class and member
construction join points. It can be imagined as the execution of the constructor.
However, advice for construction join points work, even if there is no constructor
defined explicitly. A construction join point has arguments and argument types,
which can be exposed or filtered, e.g. by using the args pointcut function.

destruction(pointcut) NC→CDes

returns all code join points where an instance of a class in pointcut is destruc-
ted. The destruction join point ends before the destruction join point of all
members and base classes. It can be imagined as the execution of the de-
structor, although a destructor does not to be defined explicitly. A destruction
join point has an empty argument list.

Example: instance counting

The following aspect counts how many instances of the class ClassOfInterest

are created and destroyed.

39



4.7 Variables 4 PREDEFINED POINTCUT FUNCTIONS

aspect InstanceCounting {

// the class for which instances should be counted

pointcut observed() = "ClassOfInterest";

// count constructions and destructions

advice construction (observed ()) : before () {

_created++; }

advice destruction (observed ()) : after () {

_destroyed++; }

// counters

int _created, _destroyed;

public:

// Singleton aspects can have a default constructor

InstanceCounting () { _created = _destroyed = 0; }

};

The implementation of this aspect is straightforward. Two counters are initialized by
the aspect constructor and incremented by the construction/destruction advice. By
defining observed() as a pure virtual pointcut the aspect can easily be transformed
into a reusable abstract aspect.

4.7 Variables

get(pointcut) NV→CG

returns all code join points where a global variable or data member in pointcut
is read. The get join points are located at implicit lvalue-to-rvalue conversions
according to the C++ standard. In addition, the get join points are located within
all built-in compound-assignment operators, and within the built-in increment
and decrement operators.

set(pointcut) NV→CS

returns all code join points where a global variable or data member in point-
cut is modified. The set join points are located within all built-in assignment
operators, and within the built-in increment and decrement operators. The ini-
tialization of a global variable or data member provides no set join point.

ref(pointcut) NV→CR

provides all join points where a reference (reference type or pointer) to a global

40



4 PREDEFINED POINTCUT FUNCTIONS 4.7 Variables

variable or data member in the pointcut is created. The ref join points are lo-
cated within the built-in address-of operator &, if the operand is a global variable
or data member. In addition, the ref join points are located before the initializa-
tion of a variable of reference type, including return values. Moreover, the bind-
ing of a reference parameter of a function, including default values, provides ref
join points. The ref join points are also located within implicit array-to-pointer
conversions according to the C++ standard.

Example: variable matching

The following aspect observes the modification of all variables (in any scope) of the
type int. When such an integer variable is modified, the aspect reports the name
of the variable and its new value, obtained by *tjp->entity().

aspect IntegerModification {

advice set("int ...::%") : after() {

cout << "Setting variable "

<< tjp->signature() << " to "

<< *tjp->entity() << endl;

}

};

4.7.1 Limitations

The get and set pointcut functions cover variables of fundamental type, such as
integer and floating-point types, and arrays thereof. Variables of any pointer type
and arrays of pointers are also supported. The get and set pointcut functions
do not support variables of class type, unions, enumerations, bitfields, and
references.

The get, set, and ref pointcut functions match only if the variable is accessed
directly by its name. Indirect variable access via pointer or reference does not
match.

The get, set, and ref pointcut functions do not match for local variables.

41



4.8 Context 4 PREDEFINED POINTCUT FUNCTIONS

The get, set, and ref joinpoints are not located within constant expressions,
such as the built-in operator sizeof.

4.7.2 Compatibility

The get, set, and ref pointcut functions are new features that were introduced in
version 2.0 and are therefore not enabled by default to avoid compatibility issues
(e.g., if someone named a pointcut “get”). The --data_joinpoints command-
line argument enables the described functionality.

4.8 Context

that(type pattern) NT→C
returns all code join points where the current C++ this pointer refers to an
object which is an instance of a type that is compatible to the type described
by type pattern

target(type pattern) NT→C
returns all code join points where the target object of a call/set/get is an in-
stance of a type that is compatible to the type described by type pattern

result(type pattern) NT→C
returns all code join points where the type of the return value of a call/builtin/ex-
ecution/get is matched by type pattern

args(type pattern, ...) (NT ,...)→C
returns all code join points where the types of the arguments of a call/builtin/ex-
ecution/set are matched by the corresponding type patterns.

Instead of the type pattern it is also possible here to pass the name of a variable to
which the context information is bound (a context variable). In this case the type
of the variable is used for the type matching. Context variables must be declared in
the argument list of before(), after(), or around() and can be used like a function
parameter in the advice body.

The that() and target() pointcut functions are special, because they might cause
a runtime type check. The args() and result() functions are evaluated at compile
time. Exception: If a short-circuit argument is bound with the args pointcut function,
then the result of args depends on the runtime availability of the bound argument.

42



5 ATTRIBUTES 4.9 Algebraic Operators

Example: context matching

4.9 Algebraic Operators

pointcut && pointcut (N,N)→N, (C,C)→C
returns the intersection of the join points in the pointcuts

pointcut || pointcut (N,N)→N, (C,C)→C
returns the union of the join points in the pointcuts

! pointcut N→N, C→C
returns all name resp. code join points that are not included in pointcut

Example: combining pointcut expressions

5 Attributes

Attributes are a language element, which AspectC++ developers can use for user-
defined annotations. An attribute provides additional information about a join point
that aspects can exploit for collecting or filtering pointcuts. The attribute syntax is
based on the attribute syntax of C++11 (and following standards). However, As-
pectC++ provides this mechanism even if the selected language standard is older
than C++11. In this case no attributes from the namespaces gnu or clang or the
global scope must be used.

5.1 Attribute declarations

Attributes must be declared before being used in a pointcut expression. An attribute
that is used for annotating a join point must be declared, but it is not required that
the declaration is seen by the parser before the annotation location. The following
example shows such a declaration using the keyword attribute.

Example: attribute declaration

attribute myAttr();

To avoid naming conflicts, attributes can be declared inside of namespaces, classes,
or aspects. User-defined attributes shall neither be declared in the global scope nor

43



5.2 Supported code-elements 5 ATTRIBUTES

in the scope of backend compiler attributes, such as gnu or clang. The current
version of AspectC++ supports only empty argument lists. To annotate an element
of the program code, the attribute has to be referenced by its fully-qualified name.
The following example illustrates this:

Example: using attributes to annotate program elements

namespace attrib {

attribute myFuncAttr();

attribute otherAttr();

}

[[attrib::myFuncAttr, attrib::otherAttr()]] void myFunc();

To be compatible with C++11 attributes, it is not necessary to specify parameters if
the argument list of an attribute is empty. Furthermore, it is possible to use several
attributes in a pair of brackets separated by commas or several pairs of brackets
behind each other. For more information about attribute-syntax in C++11 consult the
C++11 standard.

Attributes from the namespaces gnu and clang and the global scope are evalu-
ated by AspectC++ and passed through to the backend compiler. All other attributes
are only evaluated by AspectC++ and hidden from the backend compiler.

5.2 Supported code-elements

Table 5 shows the code elements, for which annotations with attributes are sup-
ported, and the possible attribute locations. Positions of attributes are marked by
[[..]].

Code-Element Positions
namespaces namespace [[...]] myNamespace {}

classes class [[...]] myClass {};
functions [[...]] void myFunc [[...]] ();
variables [[...]] int myVar [[...]];

Table 5: attributes - code-elements and positions

If a namespace is opened more than once, all enclosed elements belong seman-
tically to the same namespace. In this case, all attributes of that namespace must

44



6 SLICES 5.3 Attributes and pointcut expressions

be present at its first definition. In subsequent definitions they can be present as
well, but don’t have to. It is forbidden to add an attribute in a subsequent definition,
which was not present in the first. A similar rule is applied for classes, functions, and
variables, which can have multiple forward declarations. In this case, all attributes
must be present at the first declaration and can be omitted later on.

5.3 Attributes and pointcut expressions

Attributes can be used in pointcut expressions where they are interpreted similar to
named pointcuts. They can be combined with logical operators like other pointcut
expressions and can be used in pointcut declarations. Thereby, the usual C++ name
lookup rules are also applicable for attributes. The following example shows how to
use attributes in pointcut expressions.

Example: using attributes in pointcut expressions

struct [[output::myAttr]] myStruct {

[[output::myAttr]] void myFunc() {};

};

aspect output {

attribute myAttr();

pointcut all() = myAttr();

};

If multiple name joinpoints, such as the namespace N and the class C, are annotated
by an attribute A, the meaning of A() in a pointcut expression is equivalent to “N”||”C”.
This means that also nested entities within N and C are matched.

6 Slices

This section defines the syntax and semantics of slice declarations. The next section
will describe how slices can be used by advice in order to introduce code. Currently,
only class slices are defined in AspectC++.

45



6.1 Class Slice Declarations 6 SLICES

6.1 Class Slice Declarations

Class slices may be declared in any class or namespace scope. They may be de-
fined only once, but there may be an arbitrary number of forward declarations. A
qualified name may be used if a class slice that is already declared in a certain
scope is redeclared or defined as shown in the following example:

slice class ASlice;

namespace N {

slice class ASlice; // a different slice!

}

slice class ASlice { // definition of the ::ASlice

int elem;

};

slice class N::ASlice { // definition of the N::ASlice

long elem;

};

If a class slice only defines a base class, an abbreviated syntax may be used:

slice class Chained : public Chain;

Class slices may be anonymous. However, this only makes sense as part of an
advice declaration. A class slice may also be declared with the aspect or struct
keyword instead of class. While there is no difference between class and aspect
slices, the default access rights to the elements of a struct slice in the target classes
are public instead of private. It is forbidden to declare aspects, pointcuts, advice, or
slices as members of a class slice.

Class slices may have members that are not defined within the body of a class
slice declaration, e.g. static member variable or non-inline functions:

slice class SL {

static int answer;

void f();

};

//...

slice int SL::answer = 42;

slice void SL::f() { ... }

46



7 ADVICE

These external member declarations have to appear after the corresponding slice
declaration in the source code.

7 Advice

This section describes the different types of advice offered by AspectC++. Advice
are categorized in advice for join points in the dynamic control flow of the running
program, e. g. function call or executions, and advice for static join points like intro-
ductions into classes.

In either case the compiler makes sure that the code of the aspect header file,
which contains the advice definition (if this is the case), is compiled prior to the
affected join point location.

7.1 Advice for Dynamic Join Points

before(...)
the advice code is executed before the join points in the pointcut

after(...)
the advice code is executed after the join points in the pointcut

around(...)
the advice code is executed in place of the join points in the pointcut

7.2 Advice for Static Join Points

Static join points in AspectC++ are classes or aspects. Advice for classes or aspects
can introduce new members or add a base class. Whether the new member or base
class becomes private, protected, or public in the target class depends on the
protection in the advice declaration in the aspect.

baseclass(classname)
a new base class is introduced to the classes in the pointcut

introduction declaration
a new member variable, member function, or type is introduced

47



8 JOINPOINT API

Introduction declarations are only semantically analyzed in the context of the target.
Therefore, the declaration may refer, for instance, to types or constants, which are
not known in the aspect definition, but only in the target class or classes. To introduce
a constructor or destructor the name of the aspect, to which the introduction belongs,
has to be taken as the constructor/destructor name.

Non-inline introductions can be used for introductions of static member variables
or member function introduction with separate declaration an definition. The name
of the introduced member has to be a qualified name in which the nested name
specifier is the name of the aspect to which the introduction belongs.

8 JoinPoint API

The following sections provide a complete description of the JoinPoint API.

8.1 API for Dynamic Join Points

The JoinPoint-API for dynamic join points can be used within the body of advice
code.

8.1.1 Types and Constants

Result

result type of a function

Res::Type, Res::ReferredType

result type of the affected function or entity access

Arg<i>::Type, Arg<i>::ReferredType

type of the i th argument of the affected join point (with 0≤ i < ARGS)

ARGS

number of arguments

That

object type (object initiating a call)

48



8 JOINPOINT API 8.1 API for Dynamic Join Points

Target

target object type (target object of a call)

Entity

type of the primary referenced entity (function or variable)

MemberPtr

type of the member pointer for entity or void * for nonmembers

Array

type of the accessed array

Dim<i>::Idx

type of the i th dimension of the accessed array (with 0≤ i < DIMS)

Dim<i>::Size

size of the i th dimension of the accessed array (with 0≤ i < DIMS)

DIMS

number of dimensions of an accessed array or 0 otherwise

Example: type usage

8.1.2 Functions

static AC::Type type()

returns the encoded type for the join point conforming with the C++ ABI V3
specification8

static int args()

returns the number of arguments of a function for call and execution join points

static AC::Type argtype(int number)

returns the encoded type of an argument conforming with the C++ ABI V3
specification

static const char *signature()

gives a textual description of the join point (function name, class name, ...)

8http://www.codesourcery.com/cxx-abi/abi.html\#mangling

49

http://www.codesourcery.com/cxx-abi/abi.html%5C#mangling


8.1 API for Dynamic Join Points 8 JOINPOINT API

static unsigned int id()

returns a unique numeric identifier for this join point

static const char *filename()

returns the name of the file in which the join point (shadow) is located

static int line()

the number of the line in which the join point (shadow) is located

static AC::Type resulttype()

returns the encoded type of the result type conforming with the C++ ABI V3
specification

static AC::JPType jptype()

returns a unique identifier describing the type of the join point

Example: static function usage

void *arg(int number)

returns a pointer to the memory position holding the argument value with index
number

Result *result()

returns a pointer to the memory location designated for the result value or 0 if
the function has no result value

That *that()

returns a pointer to the object initiating a call or 0 if it is a static method or a
global function

Target *target()

returns a pointer to the object that is the target of a call or 0 if it is a static
method or a global function

Entity *entity()

returns a pointer to the accessed entity (function or variable) or 0 for member
functions or builtin operators

MemberPtr *memberptr()

returns a member pointer to entity or 0 for nonmembers

50



8 JOINPOINT API 8.2 API for Static Join Points

Array *array()

returns a typed pointer to the accessed array

Dim<i>::Idx idx<i>()

returns the value of the i th index used for the array access

void proceed()

executes the original join point code in an around advice by calling
action().trigger()

AC::Action &action()

returns the runtime action object containing the execution environment to exe-
cute the original functionality encapsulated by an around advice

Example: non-static function usage

8.2 API for Static Join Points

The JoinPoint-API for static join points can be used within the definition of a slice and
describes the state of target class before the introduction took place. It is accessed
through the built-in type JoinPoint (e.g. JoinPoint::signature()) and pro-
vides the following functions, types, and constants:

static const char *signature()

returns the target class name as a string

That

The (incomplete) target type of the introduction

HASHCODE

integer hash value of the target type

BASECLASSES

number of base classes of the target class

BaseClass<I>::Type

type of the I th base class

BaseClass<I>::prot, BaseClass<I>::spec

Protection level (AC::PROT_NONE /PRIVATE /PROTECTED /PUBLIC) and ad-
ditional specifiers (AC::SPEC_NONE /VIRTUAL) of the I th base class

51



8.2 API for Static Join Points 8 JOINPOINT API

MEMBERS

number of data members of the target class

Member<I>::Type, Member<I>::ReferredType

type of the I th member variable of the target class

Member<I>::prot, Member<I>::spec

Protection level (see BaseClass<I>::prot) and additional member variable spec-
ifiers (AC::SPEC_NONE /STATIC /MUTABLE)

static ReferredType *Member<I>::pointer(T *obj=0)

returns a typed pointer to the I th member variable (obj is needed for non-static
member variables)

static const char *Member<I>::name()

returns the name of the I th member variable

FUNCTIONS

number of member functions of the target class

Function<I>::prot, Function<I>::spec

Protection level (see BaseClass<I>::prot) and additional member variable spec-
ifiers (AC::SPEC_NONE /STATIC /VIRTUAL)

CONSTRUCTORS

number of user-defined constructors of the target class

Constructor<I>::prot, Constructor<I>::spec

Protection level (see BaseClass<I>::prot) and additional member variable spec-
ifiers (AC::SPEC_NONE)

DESTRUCTORS

number (zero or one) of user-defined destructors of the target class

Destructor<I>::prot, Destructor<I>::spec

Protection level (see BaseClass<I>::prot) and additional member variable spec-
ifiers (AC::SPEC_NONE /VIRTUAL)

52



9 ADVICE ORDERING

9 Advice Ordering

9.1 Aspect Precedence

AspectC++ provides a very flexible mechanism to define aspect precedence. The
precedence is used to determine the execution order of advice code if more than one
aspect affects the same join point. The precedence in AspectC++ is a member of a
join point. This means that the precedence relationship between two aspects might
vary in different parts of the system. The compiler checks the following conditions to
determine the precedence of aspects:

order declaration: if the programmer provides an order declaration, which defines
the precedence relationship between two aspects for a join point, the compiler
will obey this definition or abort with a compile-time error if there is a cycle in
the precedence graph. Order declarations have the following syntax:
advice pointcut-expr : order ( high, ...low )

The argument list of order has to contain at least two elements. Each el-
ement is a pointcut expression, which describes a set of aspects. Each as-
pect in a certain set has a higher precedence than all aspects, which are
part of a set following later in the list (on the right hand side). For example
’("A1"||"A2","A3"||"A4")’ means that A1 has precedence over A3 and
A4 and that A2 has precedence over A3 and A4. This order directive does not
define the relation between A1 and A2 or A3 and A4. Of course, the pointcut
expressions in the argument list of order may contain named pointcuts and
even pure virtual pointcuts.

inheritance relation: if there is no order declaration given and one aspect has a
base aspect the derived aspect has a higher precedence than the base aspect.

9.2 Advice Precedence

The precedence of advice is determined with a very simple scheme:

• if two advice declarations belong to different aspects and there is a precedence
relation between these aspects (see section 9.1) the same relation will be as-
sumed for the advice.

53



9.3 Effects of Advice Precedence 9 ADVICE ORDERING

• if two advice declarations belong to the same aspect the one that is declared
first has the higher precedence.

9.3 Effects of Advice Precedence

Only advice precedence has an effect on the generated code. The effect depends
on the kind of join point, which is affected by two advice declarations.

Class Join Points

Advice on class join points can extend the member variable list or base class list. If
advice has a higher precedence than another it will be handled first. For example, an
introduced new base class of advice with a high precedence will appear in the base
class list on the left side of a base class, which was inserted by advice with lower
precedence. This means that the execution order of the constructors of introduced
base classes can be influenced, for instance, by order declarations.

The order of introduced member variables also has an impact on the construc-
tor/destructor execution order as well as the object layout.

Code Join Points

Advice on code join points can be before, after, or around advice. For before
and around advice a higher precedence means that the corresponding advice code
will be run first. For after advice a higher precedence means that the advice code
will be run later.

If around advice code does not call tjp->proceed() or trigger() on the
action object no advice code with lower precedence will be run. The execution of
advice with higher precedence is not affected by around advice with lower prece-
dence.

For example, consider an aspect that defines advice9 in the following order: BE1,
AF1, AF2, AR1, BE2, AR2, AF3. As described in section 9.2 on the preceding page
the declaration order also defines the precedence: BE1 has the highest and AF3 the
lowest. The result is the following advice code execution sequence:

1. BE1 (highest precedence)

9BE is before advice, AF after advice, and AR around advice

54



10 LIST OF EXAMPLES

2. AR1 (the indented advice will only be executed if proceed() is called!)

(a) BE2 (before AR2, buts depends on AR1)

(b) AR2 (the indented code will only be executed if proceed() is called!)

i. original code under the join point

ii. AF3

3. AF2 (does not depend on AR1 and AR2, because of higher precedence)

4. AF1 (run after AF2, because it has a higher precedence)

10 List of Examples

match expressions (name pointcuts), 7
pointcut expressions, 8
pointcut declaration, 11
pure virtual pointcut declaration, 11
class slice declaration, 12
advice declaration, 12
advice declaration with access to context information, 13
introductions, 13
base class introduction, 14
advice ordering, 14
aspect declaration, 15
abstract aspect, 16
reused abstract aspect, 16
aspect instantiation using aspectof, 17
re-usable trace aspect, 18
type, scope, and name parts of a function match expression, 26
simple name patterns, 20
operator name patterns, 27
conversion function name patterns, 27
scope patterns, 21
type patterns with the wildcard character, 21
type patterns with const and volatile, 22

55



A GRAMMAR

type patterns with virtual, 23
type matching, 30
control flow dependant advice activation, 31
matching in scopes, 32
function matching, 33
instance counting
context matching, 43
combining pointcut expressions, 43
attribute declaration, 43
using attributes to annotate program elements, 44
using attributes in pointcut expressions, 45
type usage, 49
static function usage, 50
non-static function usage, 51

A Grammar

The AspectC++ syntax is an extension to the C++ syntax. It adds five new keywords
to the C++ language: aspect, advice, slice, pointcut, and attribute. Addi-
tionally it extends the C++ language by advice and pointcut declarations. In contrast
to pointcut declarations, advice declarations may only occur in aspect declarations.

class-key:
aspect

declaration:
pointcut-declaration
slice-declaration
advice-declaration
attribute-declaration

member-declaration:
pointcut-declaration
slice-declaration
advice-declaration
attribute-declaration

56



B MATCH EXPRESSION GRAMMAR

pointcut-declaration:
pointcut declaration

pointcut-expression:
constant-expression

advice-declaration:
advice pointcut-expression : order-declaration
advice pointcut-expression : slice-reference
advice pointcut-expression : declaration

order-declaration:
order ( pointcur-expression-seq )

slice-reference:
slice ::opt nested-name-specifieropt unqualified-id ;

slice-declaration:
slice declaration

attribute-declaration:
attribute unqualified-id ( ) ;

B Match Expression Grammar

Match expression in AspectC++ are used to define a type pattern and an optional
object name pattern to select a subset of the known program entities like functions,
member variables, or argument/result types. The grammar is very similar to the
grammar of C++ declarations. Any rules, which are referenced here but not defined,
should be looked up in the ISO C++ standard.

match-expression:
match-declaration

match-id:
%

nondigit
match-id %

57



B MATCH EXPRESSION GRAMMAR

match-id nondigit
match-id digit

match-declaration:
match-decl-specifier-seqopt match-declarator

match-decl-specifier-seq:
match-decl-specifier-seqopt match-decl-specifier

match-decl-specifier:
nested-match-name-specifieropt match-id
cv-qualifier
match-function-specifier
char

wchar_t

bool

short

int

long

signed

unsigned

float

double

void

match-function-specifier:
virtual

static

nested-match-name-specifier:
match-id :: nested-match-name-specifieropt

... :: nested-match-name-specifieropt

match-declarator :
direct-match-declarator
match-ptr-declarator match-declarator

abstract-match-declarator :
direct-abstract-match-declarator

58



B MATCH EXPRESSION GRAMMAR

match-ptr-declarator abstract-match-declarator

direct-match-declarator:
match-declarator-id
direct-match-declarator ( match-parameter-declaration-clause ) cv-qualifier-
seqopt

direct-match-declarator [ match-array-size ]

direct-abstract-match-declarator:
direct-abstract-match-declarator ( match-parameter-declaration-clause ) cv-
qualifier-seqopt

direct-abstract-match-declarator [ match-array-size ]

match-array-size:
%

decimal-literal

match-ptr-operator:

* cv-qualifier-seqopt

&

nested-match-name-specifier * cv-qualifier-seqopt

match-parameter-declaration-clause:
...

match-parameter-declaration-listopt

match-parameter-declaration-list , ...

match-parameter-declaration-list:
match-parameter-declaration
match-parameter-declaration-list , match-parameter-declaration

match-parameter-declaration:
matct-decl-specifier-seq match-abstract-declaratoropt

match-declarator-id:
nested-match-name-specifieropt match-id
nested-match-name-specifieropt match-operator-function-id
nested-match-name-specifieropt match-conversion-function-id

59



B MATCH EXPRESSION GRAMMAR

match-operator-function-id:
operator %

operator match-operator

match-operator: one of
new delete new[] delete[]

+ - * / %% ^ & | ~ ! = < >

+= -= *= /= %%= ^= &= |= << >> >>= <<= ==

!= <= >= && || ++ -- , .* ->* -> () []

?:

match-conversion-function-id:
operator match-conversion-type-id

match-conversion-type-id:
match-type-specifier-seq match-conversion-declaratoropt

match-conversion-declarator:
match-ptr-operator match-conversion-declaratoropt

60



C STRUCTURE OF THE PROJECT REPOSITORY

C Structure Of The Project Repository

Figure 3 shows the internal structure of the AspectC++ model and the AspectC++
project repository. The distinction between name and code join points and also the
inheritance hierarchy is visible.

F
ile

fi
le

n
a
m

e
: 
s
tr

in
g

le
n
: 
in

t

ti
m

e
: 
in

t

T
U

n
it

 

H
e
a
d
e
r

 in

0
..
N

S
o
u
rc

e

k
in

d
: 
S

o
u
rc

e
L
o
c
K

in
d

lin
e
: 
in

t

le
n
: 
in

t fi
le

M
e
m

b
e
rI

n
tr

o

 

In
tr

o
d
u
c
tio

n

 

in
tr

o

N
a
m

e

n
a
m

e
: 
s
tr

in
g

b
u
ilt

in
: 
b
o
o
l

m
e
m

b
e
rs

0
..
N C

la
s
s
S

lic
e

is
_
s
tr

u
c
t:
 b

o
o
l

n
a
m

e
d
_
s
lic

e

0
..
1

a
n
o
n
_
s
lic

e

0
..
1

tu
n
it
s

0
..
N

C
la

s
s

 

A
n
y

jp
id

: 
in

t

c
h
ild

re
n

0
..
N

N
a
m

e
s
p
a
c
e

 

F
u
n
c
tio

n

k
in

d
: 
F

u
n
c
tio

n
T

y
p
e

v
a
ri
a
d
ic

_
a
rg

s
: 
b
o
o
l

c
v
_
q
u
a
lif

ie
rs

: 
C

V
Q

u
a
lif

ie
rs

V
a
ri
a
b
le

k
in

d
: 
V

a
ri
a
b
le

T
y
p
e

P
o
in

tc
u
t

e
x
p
r:

 s
tr

in
g

k
in

d
: 
P

o
in

tc
u
tT

y
p
e

B
a
s
e
In

tr
o

 

in
tr

o

b
a
s
e
s

0
..
N

b
a
s
e
s

0
..
N

d
e
ri
v
e
d

0
..
N

C
la

s
s
P

la
n

 p
la

n

0
..
1

A
s
p
e
c
t

 

m
e
m

b
e
r_

in
tr

o
s

0
..
N

b
a
s
e
_
in

tr
o
s

0
..
N

C
o
d
e
A

d
v
ic

e

c
o
n
d
iti

o
n
a
l: 

b
o
o
l

A
d
v
ic

e
C

o
d
e

k
in

d
: 
A

d
v
ic

e
C

o
d
e
T

y
p
e

c
o
n
te

x
t:
 A

d
v
ic

e
C

o
d
e
C

o
n
te

x
t

a
d
v
ic

e

C
o
d
e
P

la
n

 

b
e
fo

re

0
..
N

a
ro

u
n
d

0
..
1

a
ft
e
r

0
..
N

n
e
x
t_

le
v
e
l

0
..
1

s
o
u
rc

e

0
..
N

T
y
p
e

s
ig

n
a
tu

re
: 
s
tr

in
g

A
rg

ty
p
e
: 
s
tr

in
g

n
a
m

e
: 
s
tr

in
g

C
o
d
e

 

A
d
v
ic

e

lid
: 
in

t

s
ta

tic
_
in

0
..
1

re
s
u
lt
_
ty

p
e

0
..
1

a
rg

_
ty

p
e
s

0
..
N

ty
p
e

p
la

n

0
..
1

A
c
c
e
s
s

lid
: 
in

t

ta
rg

e
t_

o
b
je

c
t_

lid
: 
in

t

c
fg

_
b
lo

c
k
_
lid

: 
in

t

E
x
e
c
u
tio

n

 

C
o
n
s
tr

u
c
tio

n

 

D
e
s
tr

u
c
tio

n

 

ta
rg

e
t_

c
la

s
s

0
..
1

G
e

t

 

S
e
t

 

C
a
ll

d
e
fa

u
lt_

a
rg

s
: 
in

t

B
u
ilt

in

 

R
e

f

 

G
e
tR

e
f

k
in

d
: 
V

a
ri
a
b
le

T
y
p
e

S
e
tR

e
f

k
in

d
: 
V

a
ri
a
b
le

T
y
p
e

C
a
llR

e
f

k
in

d
: 
V

a
ri
a
b
le

T
y
p
e

v
a
ri
a
b
le

0
..
1

v
a
ri
a
b
le

0
..
1

v
a
ri
a
d
ic

_
a
rg

_
ty

p
e
s

0
..
N

ta
rg

e
t

im
p
lic

it
_
a
c
c
e
s
s

0
..
N

ta
rg

e
tim

p
lic

it
_
a
c
c
e
s
s

0
..
N

ty
p
e

v
a
ri
a
b
le

ty
p
e

ty
p
e

ty
p
e

a
rg

s

0
..
N

p
o
in

tc
u
t

O
rd

e
r

 

a
s
p
e
c
t_

e
x
p
rs

0
..
N

in
tr

o
s

0
..
N

a
d
v
ic

e
s

0
..
N

o
rd

e
rs

0
..
N

M
o
d
e
l

v
e
rs

io
n
: 
s
tr

in
g

fi
le

s

0
..
N

ro
o
t

Figure 3: Structure of the AspectC++ project repository

61



D PROJECT REPOSITORY FILE FOR EXAMPLE on this page

D Project Repository File For Example on page 8

<?xml version="1.0"?>

<ac-model version="1.2" ids="7">

<files>

<TUnit filename="shape.cpp" len="42" time="1442951698" id="0"/>

</files>

<root>

<Namespace name="::">

<children>

<Class name="Shape" id="1">

<children>

<Function kind="8" cv_qualifiers="0" name="~Shape" builtin="true">

<children>

<Destruction/>

</children>

</Function>

<Function kind="7" cv_qualifiers="0" name="Shape" builtin="true">

<children>

<Construction/>

</children>

</Function>

<Function kind="7" cv_qualifiers="0" name="Shape" builtin="true">

<arg_types>

<Type signature="const Shape &amp;"/>

</arg_types>

<children>

<Construction/>

</children>

</Function>

</children>

<source>

<Source kind="1" file="0" line="1" len="1"/>

<Source kind="2" file="0" line="1" len="1"/>

</source>

</Class>

<Namespace name="Circle">

<children>

<Class bases="1" name="S_Circle" id="4">

<children>

<Function kind="7" cv_qualifiers="0" name="S_Circle" builtin="true">

<children>

<Construction/>

</children>

</Function>

<Function kind="7" cv_qualifiers="0" name="S_Circle" builtin="true">

<arg_types>

<Type signature="const Circle::S_Circle &amp;"/>

</arg_types>

<children>

<Construction/>

</children>

</Function>

62



D PROJECT REPOSITORY FILE FOR EXAMPLE on the current page

<Variable kind="3" name="m_radius">

<type>

<Type signature="int"/>

</type>

<source>

<Source kind="1" file="0" line="8" len="1"/>

</source>

</Variable>

<Function kind="3" cv_qualifiers="0" name="radius" id="3">

<result_type>

<Type signature="void"/>

</result_type>

<arg_types>

<Type signature="int"/>

</arg_types>

<children>

<Execution/>

<Builtin target="2" lid="0">

<source>

<Source kind="0" file="0" line="11" len="1"/>

</source>

</Builtin>

</children>

<source>

<Source kind="1" file="0" line="10" len="3"/>

</source>

</Function>

<Function kind="8" cv_qualifiers="0" name="~S_Circle">

<children>

<Destruction/>

</children>

<source>

<Source kind="1" file="0" line="13" len="1"/>

</source>

</Function>

</children>

<source>

<Source kind="1" file="0" line="7" len="8"/>

<Source kind="2" file="0" line="7" len="1"/>

</source>

</Class>

<Function kind="1" cv_qualifiers="0" name="draw" id="6">

<result_type>

<Type signature="void"/>

</result_type>

<arg_types>

<Type signature="int"/>

</arg_types>

<children>

<Execution/>

<Call target="3" lid="0" target_class="4">

<source>

<Source kind="0" file="0" line="18" len="1"/>

</source>

63



D PROJECT REPOSITORY FILE FOR EXAMPLE on this page

</Call>

<Call target="5" lid="1">

<source>

<Source kind="0" file="0" line="19" len="1"/>

</source>

</Call>

</children>

<source>

<Source kind="1" file="0" line="16" len="5"/>

</source>

</Function>

</children>

<source>

<Source kind="0" file="0" line="4" len="18"/>

</source>

</Namespace>

<Function kind="1" cv_qualifiers="0" name="draw" id="5">

<result_type>

<Type signature="void"/>

</result_type>

<arg_types>

<Type signature="Shape &amp;"/>

</arg_types>

<children>

<Execution/>

</children>

<source>

<Source kind="1" file="0" line="2" len="1"/>

</source>

</Function>

<Function kind="1" cv_qualifiers="0" name="operator =" builtin="true" tunits="0" id

="2">

<result_type>

<Type signature="int &amp;"/>

</result_type>

<arg_types>

<Type signature="int &amp;"/>

<Type signature="int"/>

</arg_types>

</Function>

<Function kind="1" cv_qualifiers="0" name="main">

<result_type>

<Type signature="int"/>

</result_type>

<children>

<Execution/>

<Call target="6" lid="0">

<source>

<Source kind="0" file="0" line="24" len="1"/>

</source>

</Call>

</children>

<source>

<Source kind="1" file="0" line="23" len="4"/>

64



D PROJECT REPOSITORY FILE FOR EXAMPLE on the current page

</source>

</Function>

</children>

</Namespace>

</root>

</ac-model>

65



INDEX INDEX

Index
%, 20, 21, 27
%%, 27
..., 20, 22

abstract aspect, 11, 16
ac++, 6
action, 12, 19

trigger(), 19
action(), 19, 51
advice, 12–14

after, 12, 47
around, 12, 47
baseclass, 47
before, 12, 47
code, 12–13
declaration, 12, 47–48, 57
introduction, 13–14
introduction declaration, 47
order, 14
ordering, 53–55
runtime support, 17–19

after, 12, 47
any scope sequence, 20
any type node, 21
arg(), 50
Arg<i>::ReferredType, 48
Arg<i>::Type, 48
ARGS, 48
args(), 13, 42, 49
argtype(), 49
argument types, 23
around, 12, 47
array(), 51

aspect, 11, 15–17
abstract, 11, 16
declaration, 15
instantiation, 16–17

aspect interaction, 14
aspectOf(), 16
aspectof(), 16
attribute

declaration, 57

base(), 29
baseclass, 47
BASECLASSES, 51
before, 12, 47
built-in operators

builtin(), 33
limitations, 34
supported operators, 36

builtin
limitations, 34
supported operators, 36

builtin(), 33
builtin join point, 10

call(), 32
call join point, 10
cflow(), 30
code join point, 9, 12
code pointcut, 7
const, 22
construction(), 39
context variables, 12, 13, 17
control flow, 7, 17, 18, 30–31
conversion function name pattern, 27

66



INDEX INDEX

crosscutting concern, 6, 15

derived(), 29
destruction(), 39
DIMS, 49

Entity, 49
entity(), 50
execution(), 32
execution join point, 10, 13

filename(), 50

get(), 40
get join point, 10
grammar, 56

id(), 50
idx(), 51
Idx, 49
introduction, 13–14

access rights, 14
introduction declaration, 47

join point, 6, 8–10
builtin, 10
call, 10
code, 9, 12
execution, 10, 13
get, 10
set, 10

JoinPoint, 48–51
JoinPoint, 17, 19

action(), 19, 51
arg(), 50
Arg<i>::ReferredType, 48
Arg<i>::Type, 48
ARGS, 48

args(), 49
argtype(), 49
Array, 49
array(), 51
BASECLASSES, 51
DIMS, 49
Entity, 49
entity(), 50
filename(), 50
id(), 50
Idx, 49
idx(), 51
jptype(), 50
line(), 50
MemberPtr, 49
memberptr(), 50
proceed(), 19, 51
Res::ReferredType, 48
Res::Type, 48
Result, 48
result(), 50
resulttype(), 50
signature(), 49, 51
Size, 49
Target, 49
target(), 50
That, 48
that(), 50
type(), 49

jptype(), 50

line(), 50

match expression, 6–7, 19–23
conversion function name pattern, 27
grammar, 57
name matching, 20

67



INDEX INDEX

operator name pattern, 27
scope matching, 20–21, 24
scope pattern, 21
search pattern, 6
simple name pattern, 20
type matching, 21–23
type pattern with %, 21
type pattern with cv qualifier, 22
type pattern with static keyword, 23
type pattern with virtual keyword, 23

match expression grammar, 57
member(), 32
Array, 49
MemberPtr, 49
memberptr(), 50

name matching, 20
name pattern, 20, 26, 28
name pointcut, 6, 10, 14
named type, 21

operator name pattern, 27
order, 14

declaration, 57
ordering, 14

pointcut, 6–11
code, 7
declaration, 10–11, 57
expression, 7–8, 57
function, 7, 28–43
name, 6, 10, 14
pure virtual, 11

pointcut function, 7, 28–43
args(), 13, 42
base(), 13, 29, 42
builtin(), 33

call(), 32
cflow(), 30
construction(), 39
derived(), 29
destruction(), 39
execution(), 32
get(), 40
member(), 32
ref(), 40
set(), 40
target(), 13, 42
that(), 13, 42
within(), 32

pointer to member, 21, 35
precedence, 15

effects, 54–55
of advice, 53–54
of aspects, 53

proceed(), 19, 51
project repository, 61, 62
pure virtual

functions, 10
pointcut, 11, 16, 19

ref(), 40
Res::ReferredType, 48
Res::Type, 48
Result, 48
result(), 50
result(), 13, 42
resulttype(), 50
runtime support, 17

action, 12, 19
for advice code, 17–19
JoinPoint, 48–51
JoinPoint, 17, 19

68



INDEX INDEX

thisJoinPoint, 18

scope matching, 20–21, 24
scope pattern, 20, 21, 26, 28
search pattern, 6

match expression, 6–7, 19–23
set(), 40
set join point, 10
short circuit evaluation, 35, 37
signature(), 49, 51
simple name pattern, 20
Size, 49
slice, 11–12

declaration, 57
reference, 57

Target, 49
target(), 50
target(), 13, 42
That, 48
that(), 50
that(), 13, 42
thisJoinPoint, 18
tjp, 18
trigger(), 19
type(), 49
type matching, 21–23
type pattern, 26, 28
type pattern with %, 21
type pattern with cv qualifier, 22
type pattern with static keyword, 23
type pattern with virtual keyword, 23

undefined type, 22

volatile, 22

within(), 32

69


	About
	Basic Concepts
	Pointcuts
	Match Expressions
	Pointcut Expressions
	Types of Join Points
	Pointcut declarations

	Attributes
	Slices
	Advice Code
	Introductions
	Advice Ordering

	Aspects
	Aspect Instantiation

	Runtime Support
	Support for Advice Code
	Actions


	Match Expressions
	Commonly Used Matching Mechanisms
	Name Matching
	Scope Matching
	Type Matching

	Namespace and Class Match Expressions
	Function Match Expressions
	Operator Function and Conversion Function Name Matching
	Constructors and Destructors

	Variable Match Expressions

	Predefined Pointcut Functions
	Types
	Control Flow
	Scope
	Functions
	Built-in Operators
	Limitations
	Supported And Not Supported Operators

	Object Construction and Destruction
	Variables
	Limitations
	Compatibility

	Context
	Algebraic Operators

	Attributes
	Attribute declarations
	Supported code-elements
	Attributes and pointcut expressions

	Slices
	Class Slice Declarations

	Advice
	Advice for Dynamic Join Points
	Advice for Static Join Points

	JoinPoint API
	API for Dynamic Join Points
	Types and Constants
	Functions

	API for Static Join Points

	Advice Ordering
	Aspect Precedence
	Advice Precedence
	Effects of Advice Precedence

	List of Examples
	Grammar
	Match Expression Grammar
	Structure Of The Project Repository
	Project Repository File For Example exa:shapeexamplecode
	Index

