§+

Documentation:
AspectC++ Programming Guide

The AspectC++ Developers

Version 2.5

January 16, 2026

Contents

Introduction to AspectC++

Join Points

21 DynamicJoinPoints o
2.1.1 FunctionCalland Execution.
2.1.2 Constructor and Destructor
2.1.3 Variable Access e
2.1.4 Built-inOperators. o

2.2 StaticJoinPoints

Aspects
3.1 Instantiation
3.2 Abstract Aspects e

Pointcuts

41 Match Expressions e

4.2 Attributes e

4.3 PointcutOperators e

4.4 Predefined Pointcut Functions.
4.41 Code Pointcuts to Capture Dynamic Join Points
4.4.2 Control-flow and Scope-based Pointcuts
4.4.3 Context-dependent Pointcuts
4.4.4 Subclass and Member Pointcuts oL

Advice

5.1 Before, After, and Around Advice
51.1 TheBeforeAdvice
5.1.2 The After Advice
51.3 The AroundAdvice

5.2 AccessingContext e
521 That e
522 Target e

10
11

12
14
15
16
17
17
19
21
24

CONTENTS CONTENTS

5.3

5.2.3 Args 31
524 Result e 32
5.2.5 Context Variables in Named Pointcuts 33
Slice Introductions 34

5.3.1 Member Introduction 34
5.3.2 Introduction of Base Classes

5.4 Orderingof Advice e 38

2 JOIN POINTS

1 Introduction to AspectC++

AspectC++ is an aspect-oriented extension to the C++ programming language. Every
valid C++ program, from version C++98 to C++23 and beyond, is also a valid As-
pectC++ program. Beside the language extension, there is the AspectC++ compiler
for translating AspectC++ programs into binary machine code just like C++ programs.
This document introduces the core concepts of the AspectC++ language.

2 Join Points

The join point is the key concept in AspectC++. A join point is an identifiable location
in the program source code, such as a function call or the assignment to a program
variable. Join points provide the interface between C++ and AspectC++ code; that
is, join points are the only places where we can apply AspectC++ code. This section
describes all categories of join points needed to use AspectC++ effectively.

2.1 Dynamic Join Points

Most join points refer to the dynamic execution of a program at runtime. For example, a
function call that takes place at runtime provides such a dynamic join point. AspectC++
can capture the control flow of the program that approaches the respective join point
and you can apply advice there.

Furthermore, dynamic join points have context information associated with them. For
instance, the join point of a function call provides the function arguments and, for
member functions, the target object. Section 5.2 shows how to capture and make use
of this context information.

2.1.1 Function Call and Execution

AspectC++ supports two types of join points for functions: call and execution join
points. The execution join point is on the function body itself and covers all the
statements within that function body. The following example shows the execution joint
point for the function draw () :

4

2 JOIN POINTS 2.1 Dynamic Join Points

class Square {

sl draw() execution join point
void draw () {

VAP V4

'y

Every execution join point is associated with the fully qualified name of the respective
function, such as Square: :draw () in the aforementioned example. Pure virtual
functions do not have any function body and, thus, do not provide execution join points
either.

The call join point, however, typically occurs elsewhere in the program, that is, at
those locations where the respective function is invoked. The following code snippet
shows a call join point for the function draw () :

int main () {

Square s; ‘—[draW() call join point
s.draw () ;

Every call join point is associated with two fully qualified names: the name of the caller
function and the name of the callee function. In the aforementioned code snippet,
Square: :draw () is the callee function and main () is the caller function. The name
of the caller function can be used to select call join points within the main () function
only, for example, and thus to filter out call join points elsewhere. Calls via functions
pointers do not provide any call join point, as the name of the callee function cannot
be determined at compile time.

In contrast to execution join points, pure virtual functions do provide call join points.
AspectC++ also supports call join points for callee functions defined in external
program libraries that have not been compiled with AspectC++.

2.1 Dynamic Join Points 2 JOIN POINTS

2.1.2 Constructor and Destructor

Join points for class constructors are much like execution join points for member
functions. The construction join point is on the constructor body itself and covers
all the statements within that constructor body. The following example shows the
construction joint point for a user-defined constructor:

class Square {
int length;

i member initializer list
public:
Square () : length(0)

{ <
}
)

construction join point

The construction join point is located after the member initializer list; that is, the
member initializer list is executed prior to the construction join point. Implicit default
constructors and (implicit) copy constructors provide construction join points as well.

When a class instance is to be deleted eventually, the class destructor gets executed.
The class destructor, either implicitly defined or user-defined as shown in the following
code snippet, provides a destruction join point:

class Square {
V2 I 4
public:

~Squ fL‘ destruction join point
{

}
i

Both construction and destruction join points are on their respective constructor and
destructor bodies. There is no call join point for constructors and destructors in
AspectC++.

6

2 JOIN POINTS 2.1 Dynamic Join Points

2.1.3 Variable Access

AspectC++ supports join points on read and write accesses to member variables and
global variables. This means that there are no join points for local variables within
functions. For the member and global variables, AspectC++ supports three types of
join points: get, set, and ref join points. The get join point captures read access, as
shown in the following example for the member variable 1ength:

class Square {
int length;
public:

bool is_empty() { length get join point
return length == 0;

}
¥

Likewise, the set join point refers to write access to a variable. The following code
snippet shows a set join point for assignment to the global variable count:

int count = 0;

initialization of a variable

int main () {

count set join point
count = 1; <——————J J P

Note that the initialization of a global variable or member variable does not provide
any set join point. The reason is that in C++, global variables are pre-initialized at
once before the main () function is called. This pre-initialization is no event in the
dynamic execution of the program and, thus, there is no dynamic join point either.

Every get and set join point is associated with the fully qualified name of the respective
variable, such as square: : length and count in the above examples. As such, the
variable has be accessed by name to provide a get or set join point. In other words,
there is no get or set join point on indirect access via pointer or reference without the
variable name. But, member access via object pointer or object reference do provide

7

2.1 Dynamic Join Points 2 JOIN POINTS

get and set joint points, because the variable name is part of the access expression,
as shown in the next example:

class Square {
int length;
public:
static Squarex create() { L. .
_ length set join point
Square*x s = new Square;
s—>length = 0; <

return s;
}
}i

For advanced dealing with pointers and references, AspectC++ supports the ref join
point. The ref join point captures two cases: First, obtaining the address of a member
or global variable provides a ref join point. Second, the initialization or binding of
a reference to such a variable provides another ref join point. The following code
snippet illustrates both cases:

int count = 0;

int main() { count ref join points
intx pointer = &count;

int& reference = count; <——J

The ref join point is particularly useful to restrict aliasing of variables, for example, to
make sure that there are no references to a specific variable, so that get and set join
points capture each read and write access to that variable, respectively.

Every ref join point is associated with the fully qualified name of the referenced
variable. The get, set, and ref join points are furthermore associated with the name
of function where the variable access takes place, much like the caller function for
call join points. In the previous example, both ref join points are associated with the
variable name count and the function name main. That function name can be used

8

3 ASPECTS 2.2 Static Join Points

to filter out join points in other functions, for instance.

2.1.4 Built-in Operators

Since AspectC++ 2.0, there is experimental support for call join points on C++ built-in
operators. The fully qualified name of the callee function is the operator name in this
case, such as the comparison operator==, the division operator/, and so on.
However, there are many limitations with this experimental feature (see AspectC++
Language Reference, Section 4.5). Use it with care!

2.2 Static Join Points

Beside the various dynamic join points described in the previous section, AspectC++
also supports the static join point for user-defined data types, such as classes and
structs. The static join point is on the class and struct definition, respectively. It refers
to the program structure and is therefore not executable. The following piece of code
shows the static join point for the class Square:

class Square {
Sx . xS .. .
static join point

}i

Every static join point is associated with the fully qualified name of the respective data
type, such as square in the previous example. The static join point can be used to
specify advice for introducing additional member variables, member functions, nested
classes, and base classes into the respective data type.

3 Aspects

The aspect is the central language element of AspectC++ to organize crosscutting
concerns in a modular way. Aspects can be understood as an extension of the C++
class concept. That is, you can define an aspect much like you would define a class,
except for using the keyword aspect instead of class. As such, aspect share many
features of C++ classes:

3.1 Instantiation 3 ASPECTS

Aspects can have member variables.

» Aspects can have member functions, constructors, and destructors.

» Aspects can inherit from classes.

» Aspects are abstract if they declare or inherit a pure virtual member function.
Furthermore, aspects provide three additional features over classes:

« Aspects can inherit from other aspects.

» Aspects are typically instantiated automatically.

+ Aspects have pointcut definitions or advice or both (see Section 4 and 5).

Let’s ignore pointcut definitions and advice for now and let’s defer these concepts
to later sections to focus on aspect design guidelines here: First, the AspectC++
developers consider the definition of an aspect in a separate header file as good
design practice. Second, aspect header files always end with the . ah extension by
convention. Third, aspect header files need include guards much like any other C++
header file. The example in Figure 1 illustrates the definition of an aspect conforming
to these rules.

3.1 Instantiation

The previous section mentioned that aspects are instantiated automatically. This
means that you typically don’t create an object for an aspect manually. Aspects
usually implement concerns that crosscut the whole program, and such aspects
therefore need to exist for the whole program lifetime. Thus, the AspectC++ compiler
automatically creates a single instance with static lifetime (i.e. one global object) for
each aspect by default. Abstract aspects with pure virtual member functions are never
instantiated. In almost all cases, you don’t have to care about instantiation at all.

However, you can still change the default instantiation scheme if needed, for example,
to create one object for an aspect per thread (see Section 5 for an example).

10

3 ASPECTS 3.2 Abstract Aspects

#ifndef _ TRACING_AH_
#define _ TRACING_AH_ include guard
#include <iostream>

#include <string> aspect definition using
include <string

the keyword aspect

B 1 T member variable
unsigned int indentation_level = 0;

member function
void println (const charx line) { 4————J

std::cout << std::string(indentation_level, ' ')
<< line << std::endl;

} pointcut defintions and

advice (omitted here)
Jx ... *f <

A

i
closing bracket with

semicolon

#endif /x TRACING AH %/

Figure 1: Aspect definition in the separate header file Tracing.ah

3.2 Abstract Aspects

An aspect is abstract if it declares or inherits a pure virtual member function or a
pure virtual pointcut (see next section). Just like abstract classes, abstract aspects
cannot be instantiated. Other aspects can inherit from abstract aspects, and if a
derived aspect defines all inherited pure virtual functions and pointcuts, the AspectC++
compiler instantiates the derived aspect eventually.

The reason for abstract aspects is code reuse of common functionality. Imagine you
want to apply the aspect previously shown in Figure 1, but rather than printing to the
standard output stream, you want it to print to the standard error output stream. The
previously shown aspect can be rewritten as an abstract aspect with a pure virtual
println function as shown in the following code snippet:

11

4 POINTCUTS

aspect Tracing {

protected: pure
unsigned int indentation_level = 0; virtual
member
virtual void println (const charx line) = 0; function
Jx ... *f <

pointcut defintions and
bi advice (omitted here)

The actual implementation of that print 1n function can now be defined in a separate
aspect for the respective output stream. For example, the following piece of code
shows the derived aspect that prints to the standard error output stream:

,) . J inheritance
aspect ErrorStreamTracing : public Tracing {

function im-

void println (const charx line) override { Jplementatlon

std::cerr << std::string(indentation_level, ' ')
<< line << std::endl;
}
bi

The derived aspect implements only one function and reuses all the functionality of
the abstract base aspect. In this example, the abstract aspect allows the developer
to define the printing functionality later and without code duplication. This design
principle is particularly useful for aspects that allow for customization, such as aspects
that are part of a program library.

4 Pointcuts

Pointcuts describe, or rather capture, a set of join points in the program. Given a
pointcut, you can apply advice (see Section 5) on the captured join points to extend
the program there. For example, you can insert additional program statements before
the execution of the join points.

12

4 POINTCUTS

AspectC++ supports both anonymous and named pointcuts. You can define anony-
mous pointcuts at places where a pointcut expression is expected, for example, in
line with the specification of advice (see Section 5). Named pointcuts, however, are
defined much like functions. Typically, a named pointcut is defined as a member of
an aspect, although it could be defined anywhere in the aspect header file where a
function declaration is allowed. You can consider a named pointcut as a function that
returns a set of join points, and you can reuse that pointcut in different parts of your
aspect. A named pointcut is introduced by the keyword pointcut using the following
syntax:

pointcut name (parameter-list) = pointcut-expression;

Let’s take a look at an example:

aspect CaptureDraw { Jnamed point-
pointcut draw() = "void Square::draw()"; CUtandfnauﬂ‘
expression

}i

The draw pointcut has an empty parameter list and is defined as a member of the
shown aspect. The right hand side of the pointcut definition refers to the function
Square: :draw () that has, in turn, no parameters and that returns void. The pointcut
expression on the right hand side is a match expression. It matches the fully qualified
name Square: :draw () and can be used to capture all join points involving that
function. The next section describes the match expression syntax in detail.

A special pointcut expression is the value of 0, which is used to declare a named
pointcut as pure virtual. Just like the declaration of a pure virtual function, such a
pointcut must be declared using the keyword virtual as shown in the following
code snippet:

virtual pointcut other () = 0;
Aspects with pure virtual pointcuts are abstract and thus not instantiated (see Sec-

tion 3.2). It is up to derived aspects to define the pure virtual pointcuts and, thereby,
to provide the pointcut expressions for capturing the relevant join points.

13

4.1 Match Expressions 4 POINTCUTS

4.1 Match Expressions

Match expressions are used to define pointcut expressions as shown in the previous
section. They describe a set of (statically) known program entities such as types/-
classes, variables, functions, or namespaces. A match expression can be understood
as a search pattern. In such a search pattern the special character “%” is interpreted
as a wildcard for names or parts of a signature. The special character sequence “...”
matches any number of parameters in a function signature or any number of scopes
in a qualified name. A match expression is a quoted string.

Examples for match expressions

"int C::%(...)"

matches all member functions of the class C that return an int

"SList"
matches any namespace, class, struct, union, or enum whose name ends with
List.

"% printf (const char %, ...)"
matches the function print £ (defined in the global scope) having at least one
parameter of type const char = and returning any type

"const %$& ...::%(...)"
matches all functions that return a reference to a constant object

"intx Puma: :parsed_5%"
matches any pointer variable to the type int whose name starts with parsed_
and which is defined the scope pPuma, which in turn can either be a namespace,
a class, or a struct

Match expressions select program entities with respect to their definition scope, their
type, and their name. The wildcard patterns turn match expressions into a powerful
tool for selecting many join points at once, but you have to take care that you do not
select too many — or too few — join points.

14

4 POINTCUTS 4.2 Attributes

4.2 Attributes

Attributes allow you to define pointcut expressions without any match expression.
You can select any program entity, such as a namespace, a class, a function, and a
variable by applying one or several attributes to its definition. The following example
shows the annotation of the function is_empty () with the C++ standard attribute
[[nodiscard]], which primarily instructs the compiler to issue a warning when the
return value is not used:

di d bool i t
[[notlscai]]thoo ;S_emp yO function annotation by
return n == 0; . .
end attribute nodiscard

Given such a function annotation, you can now specify pointcut expressions that
describe all such annotated functions. AspectC++ supports the declaration of attribute-
based pointcut expressions using the attribute keyword and an empty parameter
list as shown in the following code fragment:

attribute nodiscard();

After that declaration, the attribute can be used exactly like a named pointcut expres-
sion. In this specific example, the attribute declaration must take place in the global
namespace, because the attribute [[nodiscard]] is already defined by the C++
standard there.

In addition to predefined standard attributes, AspectC++ supports user-defined at-
tributes, which must be declared inside namespaces, classes, or aspects to avoid
name conflicts with the standard attributes. A user-defined attribute has to be refer-
enced later by its fully-qualified name. The following example shows the declaration
and annotation of a function with a user-defined attribute:

15

4.3 Pointcut Operators 4 POINTCUTS

declaration of the user-defined

class Square { .)
attribute onscreen in the class

public: S
attribute onscreen() ; qLeic
[[Square: :onscreen]] void draw () ; annotation of the
Vi function draw with
the user-defined
attribute
aspect ScreenByAttribute { captur-e el
. B by attribute
pointcut screen () = Square::onscreen();

iy

In the shown example, the pointcut screen () captures all join points involving the
function square: :draw (), because that function is annotated with the user-defined
attribute. If multiple functions are annotated that way, the pointcut screen () captures
their join points, too. Likewise, you can apply attributes on program variables as well.

Attributes can also be used to annotate classes and namespaces, as shown in the
following code snippet, where the attribute name is indicated by three periods:

namespace [[...]] Shapes {
class [[...]] Square;

In this case, the attribute goes in front of the identifier for the respective namespace
and class. If there are multiple declarations of the same class, function, or variable,
the attribute must be present at the very first declaration. The same rule applies to
multiple namespace definitions.

4.3 Pointcut Operators

Pointcut expressions, such as match expressions and attribute-based pointcut expres-
sions, can be combined by using the algebraic operators “&&”, “||”, and “!”.

» The binary || operator produces the union set of two pointcut expressions, that

16

4 POINTCUTS 4.4 Predefined Pointcut Functions

is, it selects all join points that match either of the pointcuts or both.

» The binary && operator produces the intersection set of two pointcut expres-
sions, that is, it selects only the join points that match both pointcuts.

» The binary ! operator produces the complement of the pointcut, that is, it selects
all join points that do not match the given pointcut.

Examples for pointcut operators

[e)

"% Square::%(...)" || "% Rectangle::%(...)"
describes all member functions of both classes Square and Rectangle

[e)

"$ Square::%(...)" && !"void Square::draw ()"
describes all member functions of the class Square except Square: :draw ()

"$List" && !"LinkedList"
describes the set of classes with names that end with List but that are not
named LinkedList

"LinkedList" && "% ...::%5(...0)"
describes all member functions of the class L.inkedList

4.4 Predefined Pointcut Functions

All the match expressions you have seen so far in this chapter describe only sets of
static program entities such as classes, structs, functions, and variables. In particular,
match expressions do not capture the dynamic join points discussed in Section 2.1.
Thus, we need additional language support. AspectC++ therefore provides a wide
range of predefined pointcut functions, as shown in the following sections.

4.4.1 Code Pointcuts to Capture Dynamic Join Points

A code pointcut is a pointcut expression that captures a set of dynamic join points.
AspectC++ supports several predefined pointcut functions that convert a pointcut
expression into such a code pointcut. Table 1 presents a list of dynamic join points
and shows the corresponding pointcut functions to capture the respective join points.

17

4.4 Predefined Pointcut Functions

4 POINTCUTS

Dynamic join point

Predefined pointcut function

Function call

call (pointcut expression)

Function execution

execution (pointcut expression)

Constructor execution

construction (pointcut expression)

Destructor execution

destruction (pointcut expression)

Variable read access

get (pointcut expression)

Variable write access

set (pointcut expression)

Variable aliasing

ref (pointcut expression)

Built-in operators

builtin (pointcut expression)

Table 1: List of predefined pointcut functions for mapping a pointcut expression to the
dynamic join points described in Section 2.1

18

4 POINTCUTS 4.4 Predefined Pointcut Functions

For example, you can capture all function calls to any member function of the Square
class by using the following pointcut expression:

call("%$ Square::%(...)")

Similarly, to capture all read accesses to boolean member variables of precisely that
class, you can use:

get ("bool Sqguare::%")

If you are interested in both read and write accesses to precisely those member
variables, you can apply the aforementioned union operator as shown below:

get ("bool Square::%") || set ("bool Square::%")

Finally, the execution of the respective class constructors would be captured by the
following pointcut expression:

construction ("Square")

Each of these predefined pointcut functions requires a suitable pointcut expression as
a parameter. In particular, the call and execution pointcut functions require a pointcut
expression that precisely describes program functions. Likewise, the get, set, and ref
pointcut functions require a pointcut expression referring to program variables only.
A notable exception is that the AspectC++ compiler automatically expands pointcut
expressions that describe scopes, such as classes or namespaces, to their respective
member functions and variables. For example, the following pointcut expression
captures all function calls to any member function of the Square class:

call ("Square")

This pointcut expression avoids wildcard symbols and is essentially a shorter version
of first pointcut expression shown in the beginning of this section.

4.4.2 Control-flow and Scope-based Pointcuts

As mentioned in Section 2.1.1, each call join point is associated with both the name
of the callee function and the name of the caller function. The call pointcut function
described in the previous section filters the join points according to the callee function.
AspectC++ supports another predefined pointcut function that filters on the caller

19

4.4 Predefined Pointcut Functions 4 POINTCUTS

Description Predefined pointcut function
Join points in the lexical scope within (pointcut expression)
Join points in the control flow at runtime cflow (code pointcut)

Table 2: List of predefined pointcut functions for scope-based and control-flow match-
ing

function: The within pointcut function captures all join points that occur inside the
lexical scope of the provided pointcut expression. In other words, it selects all join
points in the function bodies where the name of the function is described by the
pointcut expression.

The within pointcut function captures call, get, set, ref, and builtin-operator join points
(see Section 2.1). As such, it typically returns a mixture of these join points and
should be used in intersection with the desired kind of join point. For example, the
following pointcut expression captures all function calls that take place in the body of
the main function:

call("%$...::%(...)") && within("int main(...)")

Similar to all the aforementioned pointcut functions, the AspectC++ compiler evaluates
the within pointcut function at compile time. This is because the compiler can easily
identify the join points by just examining the function bodies. The join points statically
occur there.

For dynamic relations between join points at runtime, AspectC++ provides the cflow
pointcut function. It takes a code pointcut as a parameter and it captures join points
in the control flow of that code pointcut. This means that it captures any join point
once the control flow of the program has approached another join point, which is
specified by the parameter. Consider, for example, that you want to capture the
constructor execution of the class square, but only for global and static objects,
which are constructed prior to the main function. Thus, you want to exclude all join
points in the control flow of the execution of the main function, as provided by the
following pointcut expression:

construction ("Square") && !cflow(execution ("int main(...)"))

20

4 POINTCUTS 4.4 Predefined Pointcut Functions

Description Predefined pointcut function

Join points where the implicit C++ this that (pointcut
pointer refers to an object that is compatible to expression)
the pointcut expression

Join points where the target object of a target (pointcut
member function call or member variable expression)
access is compatible to the pointcut expression

Join points on functions whose return type is result (pointcut
described by the pointcut expression expression)

Join points on functions whose parameter args (list of pointcut
types are described by the comma-separated expressions)
list of pointcut expressions

Table 3: List of predefined pointcut functions for filtering based on the execution
context

The AspectC++ compiler evaluates the cflow pointcut function at runtime and, there-
fore, tracks the dynamic control flow of the program. The cflow pointcut function
is only safe to use in single-threaded programs, because the current AspectC++
implementation of cflow is not thread-safe, yet.

Table 2 summarizes the cflow and within pointcut functions. We recommend using
the within pointcut function when possible, because it is evaluated at compile time.

4.4.3 Context-dependent Pointcuts

AspectC++ supports four predefined pointcut functions that depend on the join-point
context, such as the types of function arguments and the return type. This also
includes the implicit this pointer argument of member functions. Table 3 shows a
brief description of the four context-dependent pointcut functions.

The that pointcut function captures any join point where the implicit C++ this pointer
refers to an object that is compatible to the provided match expression. This could be

21

4.4 Predefined Pointcut Functions 4 POINTCUTS

Rectangle

draw(): void

|

Square

Figure 2: The class Square inherits from the class Rectangle, illustrated as UML
class diagram

any dynamic join point, such as function and constructor execution. Consider the class
hierarchy in Figure 2, where the class Square inherits from the class Rectangle.
The execution of the draw member function, the implicit constructor, and the implicit
destructor are captured by the following pointcut expression:

that ("Rectangle")

This is because in each case, an object of Rectangle type is involved. Now consider
the following pointcut expression:

that ("Square")

This pointcut expression captures the implicit constructors and destructor of the
Square class, respectively, and it also captures the execution of the inherited draw
member function if it actually draws an instance of the square class. On execution
of the draw member function, the AspectC++ compiler inserts a runtime type check to
find out whether the implicit C++ this pointer actually refers to a Square object. The
pointcut function not only captures function execution, construction, and destruction
join points. It also captures function call, get, set, ref, and builtin-operator join points
where the caller object is compatible to the provided match expression.

The target pointcut function filters on the runtime type of the callee object for member-
function calls. Likewise, it captures get, set, and ref join points on member variables
whose containing object is compatible to the provided match expression. Consider
the class hierarchy in Figure 2 once again and look at the two function calls in the
following code snippet:

22

4 POINTCUTS 4.4 Predefined Pointcut Functions

int main () {
Rectangle r;

target ("Rectangle") matches

r.draw() ;
Square s; <Jtarget(Rectangle)321) -
s.draw () ; target ("Square") match both here

The first function call uses an object of type Rectangle and, thus, it is captured by
the pointcut expression target ("Rectangle"). Likewise, the second function call
uses an object of type Square and, therefore, it is captured by the pointcut expression
target ("Square"). However, because a square is a rectangle, the former pointcut
expression also captures the second function call. In the previously shown code
snippet, the AspectC++ compiler can evaluate the target pointcut function at compile
time. If the compiler cannot evaluate the final type of the callee object at compile
time, it automatically inserts a runtime type check just as it does for the that pointcut
function.

The two aforementioned pointcut functions, that and target, both filter on the implicit
C++ this pointer. In addition, the args pointcut function filters on the explicit function
parameters. As such, the pointcut function expects a comma-separated list of match
expressions that each describe a data type. The args pointcut function selects only
those join points where a function is involved that has exactly the same number of
parameters as the pointcut function.

Examples for the args pointcut function

args ("int")
captures any function with exactly one parameter of type int

args ("s")
captures any function with exactly one parameter of any type

args ("int" , n%u)
captures any function with exactly two parameters, the first of which is of type
int

23

4.4 Predefined Pointcut Functions 4 POINTCUTS

Furthermore, AspectC++ supports a pointcut function for filtering on the return type of
functions: the result pointcut function. It takes a match expression as a parameter and
captures any join point where the function’s return type is described by the provided
match expression. For example, you can capture any function call and execution join
point on functions that return a pointer to a Square object by the following pointcut
expression:

result ("Squarex")

The AspectC++ compiler evaluates both the args and result pointcut functions at
compile time, meaning that no runtime type checks are carried out.

4.4.4 Subclass and Member Pointcuts

The derived pointcut expression allows specifying expressions that are robust with
regard to subtyping. Consider the class hierarchy in Figure 2 once again and assume
you want to capture all join points on the base class Rectangle and its derived class.
You can accomplish your goal simply by using the following pointcut expression:

derived ("Rectangle")

This is convenient because you do not have to worry about all the subclasses that
may exist, either now or in the future. If someone implements a new subclass, the
derived pointcut function captures any join point there automatically. You can also
pass a match expression describing functions to the derived pointcut function as
shown in the following example:

derived ("void Rectangle::show () ")

In this case, the pointcut expression captures any join point on the show function,
either on the definition in the base class Rectangle, or on redefinitions in subclasses.

Finally, AspectC++ provides the member pointcut function. It takes a match expres-
sion as a parameter and returns all functions, variables, and nested types declared
in the scopes described in the provided match expression. The main purpose of the
member pointcut function is to capture nested classes. Table 4 summarizes both the
member and derived pointcut function.

24

5 ADVICE

Description Predefined pointcut function

Returns all classes provided in the pointcut derived (pointcut
expression plus all classes derived from expression)

them, in addition to all member functions

provided in the pointcut expression plus all

redefinitions of these member functions in

derived classes

Returns all functions, variables, and nested member (pointcut
types declared in the scopes described in expression)
the pointcut expression

Table 4: List of predefined pointcut functions for subclasses and members (including
nested types)

5 Advice

Pointcuts, as explained in the previous section, capture locations in the program
“‘where” you can apply advice code. As such, the advice code defines the specific
action of “what” to do there. Thus, the advice is the essential language concept
of AspectC++ for making practical use of pointcuts. For dynamic join points in the
execution of a program at runtime, advice is similar to a member function. You specify
program statements that shall be executed one after the other on the respective join
point.

5.1 Before, After, and Around Advice

When you apply advice to one of the dynamic join points described in Section 2.1,
you can specify whether the advice shall be executed before or after the program
reaches the respective join point. Alternatively, you can specify that the advice code
shall be executed as a replacement for the code at the captured join point.

25

5.1 Before, After, and Around Advice 5 ADVICE

5.1.1 The Before Advice

Advice that takes place prior to the execution of some dynamic join point is introduced
by the keyword advice using the following syntax:

advice code-pointcut : before() { /* advice body */ }

Because the advice syntax expects a code pointcut, you have to use one of the
predefined pointcut functions for dynamic join points (see Section 4.4.1). The keyword
before specifies that the advice body, which contains the program statements, is
executed prior to the dynamic join point. An advice has to be a member of an aspect,
just like a member function. Let’s take a look at an example:

code
#include <iostream>)
pointcut
on draw
aspect Squarelogger { ti 0
execution
advice execution ("void Square::draw()")
before () {
std::cout << "Log: Started drawing a square"; 47
std::cout << std::endl; < advice
} body

iy

This aspect contains one piece of advice that uses the predefined execution point-
cut function to capture the execution of the draw () function by match expression.
Both statements in the advice body are executed prior to any execution of the cap-
tured function. In this example, the before advice implements logging to the standard
output stream. Typically, the before advice is also used for checking and enforcing
preconditions for the captured code sections.

5.1.2 The After Advice

The syntax for defining the after advice is similar to the before advice, except that the
keyword after is used. For example, the following aspect implements logging after
the execution of the draw () function, that is, just before that function returns:

26

5 ADVICE 5.1 Before, After, and Around Advice

. : code
#include <iostream>)
pointcut
on draw;
aspect Squarelogger2 { ti 0
execution
advice execution ("void Square::draw()")
after () {
std::cout << "Log: Finished drawing a square"; 47
std::cout << std::endl; < advice
J body

}i

Beside logging, this kind of advice is typically used for checking and enforcing post-
conditions. As described in Section 4.4.1, other predefined pointcut functions can
be used to apply advice after constructor/destructor execution, function calls, and
variable accesses. The same applies to the aforementioned before advice and to the
around advice as described in the following section.

5.1.3 The Around Advice

The around advice differs from the previously mentioned kinds of advice in that it
completely bypasses the captured join point. This means that program code at the
specific join point will not be executed by default when an around advice is applied.
However, you can still execute the bypassed code if desired. AspectC++ provides
the built-in function t jp—>proceed () for executing code that was replaced by the
around advice. By using that built-in function, code can be added both before and
after the join point with a single advice. In the following example, the around advice
implements logging (®) before the execution of the captured draw () function, (@)
proceeds with the replaced code, and (®) implements logging afterwards. Another
typical use case for the around advice is executing the t jp—>proceed () function in
a try/catch block to handle exceptions transparently.

27

5.2 Accessing Context 5 ADVICE

#include <iostream> replace the
execution of the
aspect SquarelLogger3 { draw() function by
advice execution ("void Square::draw()") : |the advice body
around () { < .
std::cout << "Log: Started drawing a square" © logging
before

<< std::endl; -
tjp->proceed () ; <« 10 execute the draw() function
std::cout << "Log: Finished drawing a square"
<< std::endl; -

® logging

I after

5.2 Accessing Context

The previously shown advice bodies with their program statements look similar to the
bodies of member functions (except for the built-in t jp—>proceed function that is
only available in the around advice). Much like member functions, advice can also
have parameters, referred to as context variables. You can use such context variables
for passing data from the join point to the advice body. AspectC++ supports four
kinds of context information that correspond to the four context-dependent pointcut
functions listed in Table 3 on page 21: that, target, args, and result. Either of these
pointcut functions can be used for binding context variables to the specific context
information at the respective join point and, thus, for making that information available
in the advice body.

5.2.1 That

AspectC++ provides access to the implicit C++ this pointer by the pointcut function
that. It exposes the involved object for execution join points on member functions,
construction join points, and destruction join points. You can declare a context variable
of a pointer or reference type alongside the definition of advice, and you can bind
that context variable by using the pointcut function that. The binding might involve a
runtime type check if the underlying type inherits from a base class as explained in

28

5 ADVICE 5.2 Accessing Context

Section 4.4.3.

The following example shows the declaration of the context variable square as a
reference to a Square object in the parentheses after the before keyword (@). At
the same time, the pointcut function that binds the context variable to the implicit
C++ this pointer (). It thereby captures any join point where the implicit C++ this
pointer refers to an object that is compatible to the type of the context variable. In
addition, the advice definition only captures the execution of the draw () member
function because of the intersection operator (&&). As a result, the context variable
square can be used in the advice body (®) for accessing the object connected to
the draw () member function as if it was a local variable.

#include <iostream> O declara-
tion of the
aspect Squarelogger { context
advice execution("void_Sq_uare: :draw () ") &&_ variable
that (square) : <0 binding of the context variable square
before (Square& square) { <

std::cout << "Log: Drawing a square with length "
<< square.length
<< std::endl; ® using the context vari-
} able square for accessing
}i the data member length

The pointcut function that can also be used in intersection with the call, get, set, and
ref pointcut functions (see Section 4.4.1). In these cases, it exposes the caller object,
that is, the implicit C++ this pointer prior to the captured function call or variable
access. In summary, the pointcut function that always provides access to the current
C++ this pointer on any dynamic join point where that pointer is available.

5.2.2 Target

As explained in the previous section, the pointcut function that provides information
on the caller object on call and variable-access join points. On such join points, the
pointcut function farget exposes the callee object likewise. The following example
is similar to the previous one, but the shown advice captures the call join point on

29

5.2 Accessing Context 5 ADVICE

the draw () function and, thus, binds the context variable square by the pointcut
function target to the callee object.

#include <iostream> ® binding of the
context variable
aspect Squarelogger { © declaration of
advice call ("void Square::draw()") && the context
target (square) : <« variable square
before (Square& square) { <

std::cout << "Log: Drawing a square with length "
<< square.length
<< std::endl; ® using the context vari-
} able square for accessing
}i the data member length

If you want to access both the caller and callee objects in the advice body at the
same time, you can use the pointcut functions that and target in conjunction with
two different context variables. The following code snippet exemplarily shows the
declaration of two different context variables as a comma-separated list in the advice
definition. Either context variable is bound by another pointcut function. As a result,
the advice captures all call join points on the member function draw () that occur
within some member function of the type screen. Both the caller and callee object
are thereby accessible in the advice body via references.

aspect SquareDrawingFromScreen { binding of screen
advice call ("void Square::draw()") &s& |(caller object)
within ("% Screen::%(...)") && L
that (screen) && - binding Of. SR
target (square) : < (ca"ee ObleCt)
before (Screen& screen, Square& square) { declaration
/% caa # of two context

} variables
Iy

30

5 ADVICE 5.2 Accessing Context

5.2.3 Args

The previous sections showed how advice code can get access to the C++ this
pointer, which is an implicit argument of member functions. AspectC++ also provides
access to the explicit function arguments via the args pointcut function. This pointcut
function is particularly useful for call, execution and construction join points. It allows
you to pass function arguments to the advice body by value. The following example
shows the class Rectangle with a set_size member function that has two integer
parameters x and y. The example also shows an aspect with call advice for that
member function. In the definition of the advice, there is also a declaration of two
context variables of integer type (@®). At the same time, the args pointcut function
(®) binds both context variables to the two arguments of the captured set_size
function in the specified order. To achieve this, the types of the context variables and
function parameters must be identical. Finally, both context variables can be used in
the advice body (®©).

#include <iostream>

class Rectangle {
int x, y;
public:
void set_size(int x, int y) {
this->x = x; this-—>y = y;
}
bi

aspect Rectanglelogger {

advice call ("void Rectangle::set_size(...)") &&
args (x, y) : 4—‘9 binding O declaration of the
before (int x, int y) { < context variables

std::cout << "Log: Setting rectangle size to x="

<< x << " and y=" << y ® using the context
<< std::endl; variables x and y

}i

31

5.2 Accessing Context 5 ADVICE

Note that the args pointcut function expects exactly the same number of parameters
as the captured function provides. For instance, if you only want to read the first
argument x in the previous example, you nevertheless have to use the args pointcut
function with two parameters. However, you do not need to bind every argument to a
context variable. You can simply provide match expressions for unbound arguments,
as shown in the following examples:

Examples for the args pointcut function

args (x, y)
captures any function with exactly two parameters and binds both to the context
variables x and y

args (x, "int")
captures any function with exactly two parameters (the second has to be an
integer) and binds only the first argument to the context variable x

args ("s", vy)
captures any function with exactly two parameters (the first can be of any type)
and binds only the second argument to the context variable y

5.2.4 Result

Last but not least, the return value of a function is exposed by the result pointcut
function on call and execution join points. In addition, it exposes a variable’s value
on get join points. In either case, you must use the result pointcut function only in
combination with after or around advice, and in the latter case, you must use the
bound context variable only after t jp—>proceed. This is because the return value of
a function is only defined once the function has returned. Using it prior to that causes
undefined behavior.

The next example picks up the factory function create () that returns a pointer to
a Square object as described in Section 2.1.3. The example shows an after advice
that declares a context variable with exactly the same type as the return value of the
captured function (@). That context variable is bound to the function’s return value ().
Therefore, the advice body gains access to the returned value and prints the memory
address where it points to ().

32

5 ADVICE 5.2 Accessing Context

#include <iostream>

aspect SquareFactorylLogger {

advice execution ("Squarex Square::create()") &&
result (square) : 4—‘9 binding O declaration of the
after (Square* square) { < context variable

std::cout << "Log: Created a square at address "

<< square
<< std::endl; |® using the context variable

} square that points to the
r returned object

5.2.5 Context Variables in Named Pointcuts

Section 4 introduced named pointcuts using the following syntax:

pointcut name (parameter-list) = pointcut-expression;

However, the parameter list has not been used at all, yet. Its sole purpose is the

passing of context variables, as illustrated in the following example:

named pointcut factory
with one context
variable as parameter

#include <iostream>

aspect SquareFactorylLogger2 {

pointcut factory (Squarex s) = binding of the
execution ("Squarex Square::create()") && context variable
result (s) ; <
use of the named pointcut
advice factory (square) :

e (Seuarer seuaEe) | declaration of the context variable

std::cout << "Log: Created a square at address "

<< square << std::endl;

}i

33

5.3 Slice Introductions 5 ADVICE

The shown example is semantically equivalent to the example in the previous section.
It differs syntactically in that it defines the named pointcut factory with one context
variable as parameter. The context variable is still declared alongside the definition of
advice, but it is then passed as argument to the named pointcut factory that in turn
binds it to the return value. This language feature of AspectC++ supports the reuse
of the same pointcut by multiple pieces of advice in order to avoid repeated advice
definitions.

5.3 Slice Introductions

In addition to advice for dynamic join points at runtime, you may want to extend the
static program structure at compile time. This section shows advice for introducing
additional members (variables, functions, and types) and base classes into the
program’s data structures in a crosscutting way.

5.3.1 Member Introduction

AspectC++ supports the definition of class fragments that can be inserted trans-
parently into other C++ classes. Class fragments introduce new member variables,
member functions, and nested types. Consider, for example, the aforementioned class
Square that only contains the single member variable 1ength (see Section 2.1.2).

Now, suppose you want to draw multiple squares with different colors. Thus, you want
a square object to store its individual color in a separate member variable. Likewise,
the same member variable is potentially needed for similar classes such as Circle,
Hexagon, and so on. Therefore, the member variable for the color can be declared
in a reusable class fragment. We recommend defining such a class fragment in a
separate aspect header file, with separate include guards much like any other aspect
header file (see Section 3). The following example shows the aspect header file
ColorIntroduction.ah (include guards omitted) that defines a class fragment
with the same name using the keyword s1lice.

34

5 ADVICE 5.3 Slice Introductions

ColorIntroduction.ah

enum Color { red, green, blue }; definition of the
class fragment using
slice class ColorIntroduction { the keyword slice
rivate: .
P member variable
Color color = Color::red;
public:

Color getColor () const { return color; } 4¢T

void setColor (Color c¢) { color = c; } .
V. member functions

The class fragment differs syntactically from a regular C++ class by only the additional
keyword slice. As such, a class fragment contains member variables, member
functions, nested types, and possibly base classes. However, a class fragment cannot
be instantiated directly. There must be an aspect and advice for introducing the class
fragment into a regular C++ class, which in turn can be instantiated.

For example, the following aspect header file ColorExtension.ah shows an aspect
that defines advice for introducing the aforementioned class fragment into the class
Square.

ColorExtension.ah

#include "ColorIntroduction.ah" introduction
into the

aspect ColorExtension { target class
advice "Square" : slice ColorIntroduction; Square

}i

First, the header file that defines the respective class fragment needs to be included.
After that, the aspect ColorExtension specifies advice for the static join point on
the class square by using a match expression in quotes. The s1ice keyword after
the colon allows the introduction of the class fragment specified after it. In other
words, the AspectC++ compiler inserts the member variable and functions of the class
fragment into the target class square as if they had been declared there manually.

35

5.3 Slice Introductions 5 ADVICE

Likewise, AspectC++ supports the introduction of static member variables and mem-
ber functions. Consider, as another example, a class Screen where you want to
apply the singleton design pattern. The following class fragment declares a static
member function that turns any class into a singleton.

Singleton.ah

definition of the class fragment
Jdeclaration of a static

slice class Singleton {
public:

static Singleton& getlInstance(); member function

Y

slice Singleton& Singleton::getInstance () { definition of
static Singleton instance; the static
return instance; member

} function

The name of the class fragment is Singleton and its static member function seem-
ingly returns a reference to such an object. However, because class fragments cannot
be instantiated directly as mentioned earlier, the name Singleton actually refers to
the type of the respective class where this fragment is introduced. Thus, if it is applied
to the class Screen, the static member function returns a reference to a Screen
object. Likewise, if it is applied to any other class, the function returns a reference to
the respective class type. The name of the class fragment identifies the type of the
receiving class in a generic way.

To give an example for non-inline member functions, the shown class fragment
contains only a declaration of its member function. The function itself is later defined
non-inline using the the keyword slice. The AspectC++ compiler takes care of
introducing that function into the translation units as necessary. In particular, the
AspectC++ compiler introduces the function into the same translation unit where the
first regular non-inline function of the target class is defined already.

Finally, to apply the singleton class fragment to the aforementioned class Screen,
you also need an aspect and advice as exemplarily shown in the following piece of
code:

36

5 ADVICE 5.3 Slice Introductions

SingletonDesignPattern.ah

#include "Singleton.ah"
apply the singleton
aspect SingletonDesignPattern { design pattern to the
advice "Screen" : slice Singleton; class Screen
}i

5.3.2 Introduction of Base Classes

As mentioned in the previous section, class fragments can inherit from base classes.
Once such a class fragment is introduced into a regular class, the regular class
inherits from the class fragment’s base classes. If you only want to modify the class
hierarchy without introducing additional members, you can omit the definition of
the class fragment and you can use an abbreviated syntax. For example, consider

the following class Drawable that declares a pure virtual draw () function as an
interface:

Drawable.h

class Drawable {
public:
virtual void draw() = 0;

I

You can introduce that class as a base class into the previously mentioned class
Square by defining the following aspect and advice:

37

5.4 Ordering of Advice 5 ADVICE

DrawableInterface.ah

#include "Drawable.h"

aspect DrawablelInterface {
advice "Square" : slice class : public Drawable;

Iy

In short, the advice specifies that the class square shall inherit from Drawable.
By the way, the class square already implements the draw () function (see Sec-
tion 2.1.1) and thereby satisfies the introduced interface.

5.4 Ordering of Advice

In a large software system, it is possible that multiple pieces of advice affect the
same join point. Thus, it is necessary to control the order in which the AspectC++
compiler applies the advice on a particular join point. For example, consider a
class implementing a restaurant, with member functions for entering and exiting the
restaurant.

Restaurant.h

#include <iostream>

class Restaurant ({

public:
void enter () { std::cout << "Entering" << std::endl; }
void exit () { std::cout << "Exiting" << std::endl; }

}i

Now, assume that customers want to hand their jackets in at the cloakroom after
entering the restaurant; prior to exiting, they want to return their jackets. The following
aspect implements these activities at the cloakroom.

38

5 ADVICE 5.4 Ordering of Advice

Cloakroom. ah

#include <iostream>
aspect Cloakroom {

advice execution ("void Restaurant::enter()") : after() {
std::cout << "Visiting cloakroom" << std::endl;

advice execution ("void Restaurant::exit ()") : before() {
std::cout << "Visiting cloakroom" << std::endl;
bi
In addition, consider that the restaurant provides seating. Thus, a customers takes a
seat after entering the restaurant, and leaves it prior to exiting. These activities can

be implemented exemplarily by the following aspect.

Seat.ah

#include <iostream>
aspect Seat {

advice execution ("void Restaurant::enter()") : after () {

std::cout << "Taking a seat" << std::endl;

advice execution ("void Restaurant::exit ()") : before () {

std::cout << "Leaving the seat" << std::endl;

b

Finally, let’s create a simple test program to exercise the interaction of the two aspects.

39

5.4 Ordering of Advice 5 ADVICE

TestRestaurant.cpp

#include "Restaurant.h"

int main() {
Restaurant r;
r.enter () ;

r.exit () ;

Running that test program after compiling it with AspectC++ (and both aspects) could
produce the following text output:

Entering

Taking a seat
Visiting cloakroom
Visiting cloakroom
Leaving the seat

Exiting

The order of advice is implicitly implementation-defined unless specified otherwise.
AspectC++ supports advice for specifying an explicit order by using the keyword
order with the following syntax:

advice pointcut : order(list of pointcuts);

The pointcut expression on the left side of the colon refers to the join points on which
the order shall be specified. The list of pointcut expressions on the right side defines
the precedence of aspects that apply to those join points. You typically provide a list
of match expressions that describe the involved aspects. In the previous example, a
typical behavior at a restaurant (i.e., visiting the cloakroom prior to taking a seat) can
be specified exemplarily by the following aspect.

40

5 ADVICE 5.4 Ordering of Advice

RestaurantCoordination.ah

aspect RestaurantCoordination {

advice execution ("void Restaurant::%()")

order ("Seat", "Cloakroom"); <TThe aspect Seat shall have

bi higher precedence

Running the aforementioned test program after compiling it with all the previously
shown aspects produces a more sensible text output:

Entering

Visiting cloakroom
Taking a seat
Leaving the seat
Visiting cloakroom
Exiting

The latter aspect defines the aspect seat to have higher precedence than Cloakroom.
In general, aspect precedence implies the following rules:

» For before advice, the advice of a high-precedence aspect is executed prior to
that of a low-precedence aspect.

+ For after advice, the advice of a high-precedence aspect is executed later than
that of a low-precedence aspect.

» For around advice, the advice of a high-precedence aspect encloses the ad-
vice of a low-precedence aspect. Only if the high-precedence aspect invokes
tjp->proceed (), advice of the low-precedence aspect is executed.

* For slice introductions (see Section 5.3), the class fragment of a high-precedence
aspect is inserted first.

The previously shown order advice specifies a partial order between the two aspects
Seat and Cloakroom only. If further aspects apply to the same join points, their
order is still implementation-defined. You can use pointcuts with wildcard expressions
(see Section 4.1) for specifying a global order on a join point. For example, the
following order defines the aspect C1oakroom to have always the lowest precedence:

41

5.4 Ordering of Advice 5 ADVICE

order (!"Cloakroom", "Cloakroom");

Likewise, the aspect seat can be defined to always have the highest precedence as
follows:

order ("Seat", !"Seat");
If you specify advice for conflicting precedence, for example, two different aspects

with both the highest precedence for a certain join point, the AspectC++ compiler
provides an error message at compile time to indicate the impossibility of ordering.

42

	Introduction to AspectC++
	Join Points
	Dynamic Join Points
	Function Call and Execution
	Constructor and Destructor
	Variable Access
	Built-in Operators

	Static Join Points

	Aspects
	Instantiation
	Abstract Aspects

	Pointcuts
	Match Expressions
	Attributes
	Pointcut Operators
	Predefined Pointcut Functions
	Code Pointcuts to Capture Dynamic Join Points
	Control-flow and Scope-based Pointcuts
	Context-dependent Pointcuts
	Subclass and Member Pointcuts

	Advice
	Before, After, and Around Advice
	The Before Advice
	The After Advice
	The Around Advice

	Accessing Context
	That
	Target
	Args
	Result
	Context Variables in Named Pointcuts

	Slice Introductions
	Member Introduction
	Introduction of Base Classes

	Ordering of Advice

