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Abstract

Some concerns in the design of operating systems are
hard to modularize in the implementation and thus diffi-
cult to maintain. One of these “crosscutting concerns”
is the interrupt synchronization strategy. Changing that
strategy is typically expensive and risky. Aspect-oriented
programming (AOP) is a promising approach to overcome
these problems, but most aspect-oriented programming lan-
guages are not adequate for the operating systems domain.
Thus experiences with AOP and operating systems are rare.

Here we describe our experiences with an aspect-
oriented implementation of interrupt synchronization in the
PURE operating system family using AspectC++1, a new
aspect-oriented language extension for C++ designed by
the authors. We provide a critical evaluation of our new
approach comparing it to the previous non aspect-oriented
implementation and prove that AOP does not impose an un-
acceptable overhead.

1 Introduction

Aspect-oriented programming (AOP) [4] has found so
far only limited application in the field of operating sys-
tem design and implementation. This cannot only be ex-
plained with the fact that operating system implementors
are traditionally very conservative with their choice of im-
plementation language, design approaches, and tools, but
rather with the limited availability of aspect-oriented lan-
guages and supporting tools.

This has changed with the public availability of As-
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1AspectC++ is freely available fromhttp://aspectc.org/

pectC++ [7], an aspect-oriented language extension for C++
[8]. The AspectC++ compiler is implemented as a C++
front-end, allowing the operating system code to be com-
piled to native machine code with any (optimizing) C++
compiler. At the same time AspectC++ requires no addi-
tional run-time system, making it an ideal language for as-
pect and object-oriented operating system development.

This paper presents our experiences with aspect-
orientation and operating systems as a case study: the
aspect-oriented reimplementation of interrupt synchroniza-
tion in the PURE operating system family [1].

The interrupt synchronization strategy directly affects
the overall system performance and response time, and is
closely related to the system architecture. It is implemented
by placing calls to synchronization primitives into the oper-
ating system code. The placement depends on the strategy,
which can be fine-grained, coarse-grained, or something in
between. With traditional techniques the implementation is
hard to modularize and modifying the strategy always be-
comes a risky and expensive effort. Thus, interrupt synchro-
nization can be classified as acrosscutting concern. It is a
good example to study the benefits of AOP in the operating
system domain.

The case study shows how AOP can be applied to sup-
port the modular implementation of the interrupt synchro-
nization strategy leading to code that is easier to develop
and maintain without any unacceptable overhead.

The remaining sections of this paper are structured as
follows. Section 2 gives a brief introduction into the con-
cept of aspect-oriented programming. It is followed by Sec-
tion 3, which describes the most important language ele-
ments of AspectC++. Section 4 presents our case study. It
introduces the interrupt synchronization model of PURE, its
old implementation, and the new implementation after re-
engineering this part using aspects. The paper ends with a
discussion of related work in Section 5 and our conclusions
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as well as future work in Section 6.

2 Aspect-Oriented Programming

Aspect-oriented programming tries to solve the problem
that often a single dimension of functional decomposition
is not sufficient to implement all aspects of a program in a
modular way. This means that code stemming from a single
design decision is widely spread over the system. It can-
not be encapsulated in a single function, class or module.
This so calledaspect codeis tangled with the functional
component codethat fits into the functional decomposition
scheme. A widely used example for this effect is the syn-
chronization code in non-sequential programs like operat-
ing systems. While a single strategic design decision dic-
tates at which points synchronization primitives must be in-
voked, the implementation of this decision cannot be mod-
ularized using traditional approaches.

AOP helps out of this dilemma, because an aspect-
oriented language environment allows to implement such
crosscutting concerns in modular units calledaspects. The
aspect code guides a tool, theaspect weaver, in inserting
code fragments specified by the aspect code at locations
where they are required. These insertion points are called
join points. This allows the synchronization strategy imple-
mentation to be separated from the operating system com-
ponents on the source code level. As a result, both are better
to reuse and maintain.

Aspect weaving can be performed at compile-time or at
run-time. This paper focuses oncompile-time aspect weav-
ing, because the additional cost for having an aspect weaver
in the target system performing run-time code injection is

not acceptable where highest efficiency must be provided.

3 AspectC++

AspectC++ is an extension to the C/C++ programming
language. Its aim is to support aspect-oriented program-
ming even in domains where resource limitations do not al-
low to use more expensive languages like AspectJ2, which
requires a Java run-time environment.

This section gives an overview of the key concepts of this
new language. A more in-depth introduction to AspectC++
can be found in [7].

Join Points are points in the component code where as-
pects can interfere. A join point refers to a method,
an attribute, a type, an object, or a point in the control
flow from which a join point is accessed (e.g. a method
call).

Pointcuts are the key language element to deal with the
crosscutting nature of aspects. They can describe
points in the static structure or the dynamic control
flow of a program in a highly flexible manner. Tech-
nically, pointcuts are sets of join points described by
a pointcut expression. Pointcut expressions are com-
posed frommatch expressionsused to find a set of join
points,pointcut functionsused to filter or map specific
join points from a pointcut, and algebraic operators
used to combine pointcuts.

Advice definitions can be used to specify code that should
run when the join points specified by a pointcut ex-
pression are reached. Different kinds of advice can be
declared, includingafteradvice that runs after the join
point, beforeadvice that is executed before the join
point, andaroundadvice, which is executed in place
of the join point.

Introductions can add certain items to the static program
structure. For example introductions can add new
methods, attributes, or base classes to join points of
type “class” contained in a pointcut expression.

Aspects implement in a modular way crosscutting con-
cerns and are an extension to the class concept of C++.
Additionally to attributes and methods, aspects may
also contain advice declarations. The advice code can
use the attributes stored in an aspect instance to pre-
serve state information between different invocations.
AspectC++ offers virtual pointcuts and aspect inheri-
tance to support the reuse of aspects. A virtual pointcut
can be redefined in a derived aspect and the inherited
advice will use the new pointcut definition. Pointcuts

2http://aspectj.org/



can also be pure virtual. In this case the pointcut defi-
nition has to be overwritten by a derived aspect before
it can be instantiated. Aspects can also inherit from a
class, but it is not possible to derive a class from an
aspect.

4 Case Study: Interrupt Synchronization

In this section we will take a closer look at interrupt syn-
chronization in the PURE operating system family. We first
present the pro-/epilogue synchronization model, which is
used in most PURE configurations, and the status quo of the
implementation. Later an aspect-oriented reimplementation
of the synchronization strategy is presented in two variants.
Finally, the memory consumption in terms of code size for
all three implementations is compared to evaluate the even-
tual overhead of the aspect-oriented implementation.

4.1 Pro-/Epilogue Model

Interrupt handling is one of the most important tasks of
an operating system. In PURE this task is accomplished us-
ing a pro-/epilogue model [6]. In this model the kernel is
synchronized using a single lock variable. This lock is set
when a thread enters the kernel and cleared when it leaves
it. Interrupt service routines cannot be allowed to make
calls to the kernel during this time to avoid corruption of
kernel data structures. Therefore, interrupt service routines
are split into two parts: theprologueand theepilogue. The
prologue contains the instructions for a fast response to the
device interrupt and the epilogue contains all operations that
interact with the kernel. The epilogue is not called directly
but through a special class: theguard. The task of the guard
is to check the lock variable before executing the epilogue.
In the case of a locked kernel the execution of the epilogue
is postponed until the lock is released. Otherwise the epi-
logue is executed immediately.

4.2 Status Quo

In a PURE system the global lock variable is set and
cleared usinglock.enter() resp. lock.leave() .
An analysis of the source showed 166 different calls to these
methods spread out over 15 classes. Figure 2 shows a part
of the PURE class hierarchy including 8 of the 15 mentioned
classes (marked with a bold line and a border). It is obvi-
ous that interrupt synchronization is a highly crosscutting
concern, because it affects many classes in different sub-
systems.

The class diagram reflects the layered design of PURE:
each (often configurable) layer is implemented as a new
level in the inheritance tree. Calls to the synchronization
primitives are regarded as an extension in their own layer
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Figure 2. Access to the global lock variable

and thus often are implemented in their own class (e.g.
Monitor ).

This implementation of interrupt synchronization causes
some problems, which PURE might share with other object-
oriented operating systems:

• Many subsystems (hereosek, thread, case) depend on
the implementation (or at least the interface) of the
interrupt synchronization primitives. Therefore, they
can’t be easily reused in other contexts or system con-
figurations that use a different synchronization scheme
(or none at all) without error-prone manual code ma-
nipulation. Subsystems cannot become truly reusable
components.

• The layer, which adds the synchronization code, also
automatically defines the API for the application pro-
grammer. While the application is allowed to use de-
rived classes, base classes of the API must not be
called as this would break the defined synchronization
scheme. This API restriction makes it impossible to
implement application-defined threads derived directly
from lower-level thread abstractions.

• A similar problem exists for operating system devel-
opers. If they extend the system by deriving from al-
ready synchronized classes, the added code has to be
synchronized separately. This means that the lock has
to be released before calling methods of the synchro-
nized base class to retain their calling semantic and to
avoid misbehavior. However, such an unlocked period,
even if it is very short, is not acceptable in certain sit-
uations. The only way to circumvent this problem is
to adapt the synchronization layer, which once again
results in a lot of manual intervention.



All these problems with the current PURE implementa-
tion show that interrupt synchronization (especially finding
synchronization points) is a difficult task. This task should
not be burdened on developers of single operating system
components. The placement of locks and their actual imple-
mentation should better be regarded as a strategic decision,
because of its influence on the whole system. Following
the concept ofseparation of concernsthis decision should
be made independently. Global system requirements must
be considered, which the implementor of a single system
component, e.g. a device driver, does not and should not
know. Interrupt latencies are a good example for such re-
quirements. With a fine-grained locking strategy they can
be made short at the cost of some run-time and code over-
head. A coarse-grained strategy in contrast can reduce the
run-time overhead simply because it needs less lock/unlock
calls. This often results in higher interrupt latencies.

4.3 Variant 1

In our first example we pursue a naive approach to sepa-
rate the interrupt synchronization strategy implementation
from the component code. The aspect (Figure 3) works
straightforward. A pointcutlocked is defined by using
a number of match expressions to specify exactly the set of
methods that should be executed synchronized. Likewise,
we define the pointcutsenter and leave for some spe-
cial functions that set or resp. clear the lock. The pointcut
upcall describes the functions, which leave the synchro-
nized system part. These functions have to clear the lock
before leaving the kernel and set it afterwards. The advice
definition in line 17 specifies thatlock.enter() should
be called before any of the join points from the pointcuts
locked or enter is reached. In our example this means:
before any of the selected functions is executed. The advice
definition in line 18 specifies thatlock.leave() should
be called after the given join points, i.e. after executing the
selected functions. In line 19-20 we do the inverse for all
functions that temporary leave the kernel.

This variant of the aspect has a major problem: it is not
robust. After each change in the PURE system the aspect
code has to be revised to make sure that the functions se-
lected for the different pointcuts still match the actual sys-
tem.

4.4 Variant 2

The second variant solves this weakness as it works on
a higher level of abstraction. It first defines the pointcuts
thread , sched , ipc , guard , driver , andmm. Each
of these pointcuts corresponds to a PURE subsystem (Fig-
ure 4). The additional pointcutapi layer describes the
PURE API, i.e. all classes that are available for application

size(in bytes)example system
text data bss total

friend status quo 4724 576 80 5380
variant 1 4424 612 80 5116
variant 2 4248 540 80 4868

philo status quo 8438 948 108 9494
variant 1 8470 984 108 9562
variant 2 8294 952 108 9344

clock status quo 9731 1124 768 11623
variant 1 9939 1144 772 11855
variant 2 9699 1128 736 11563

Table 1. Comparison of memory consumption

programmers.
The idea behind Variant 2 is that locking primitives

should be called whenever the subsystem boundary of a
synchronized region is crossed. The definition of the point-
cut locked in line 6 of Figure 5 shows this clearly. The
call pointcut function provides all call join points where
the target function is a member of one of the specified
classes. Here the specified classes are all classes that be-
long to the synchronized kernel region. From all these only
those calls are selected that are not located within a kernel
class. This means a call from outside into the synchronized
kernel region.

With this variant it is still necessary to provide names.
However, with pointcut functions likederived only the
most important base classes must be listed and there is no
problem with the robustness in case of extensions. Using
namespaces would further simplify the component defini-
tions.

4.5 Comparison

Table 1 shows a comparison of the code sizes3 for the
old implementation (“status quo”), Variant 1, and Variant 2.
PURE systems aim at supporting applications in the area
of deeply embedded systems and thus are configured for
and linked with the application. This means that the size
strongly depends on the application. We have therefore
measured three test applications:friend uses cooperative
threads and no interrupts whilephilo and clock use pre-
emptive interrupt driven thread scheduling. Threads used
by philo are based on the classNative andclock uses the
thread abstractions of theoseksubsystem (see Figure 2).

The measurements show that the aspect-oriented imple-
mentations do not increase the code size of our systems.
The opposite is true: especially for Variant 2 a significant

3Linux/x86 guest level implementation, compiled with gcc 2.96



1 aspect IntSync1
2 {
3 pointcut thread () = within ("osekExpanded"||"osekPlain"||"osekSeveral"||"Monitor");

4 pointcut locked () =
5 (execution ("% Actionbox::%(...)") && !execution ("% %::unload()")) ||
6 execution ("% BeamerGuard::%(...)") || execution ("% RateGuard::%(...)") ||
7 (execution ("% Semaphore::%(...)") && !execution ("% %::p()") && !execution ("% %::v()")) ||
8 execution ("% Threadbox::%(...)") ||
9 ((thread () && execution ("% %::%(...)")) &&

10 !execution ("% %::hello()") && !execution ("% %::liedown()") &&
11 !execution ("% %::getup()") && !execution ("% %::operator ()()")) ||
12 execution ("% operator new(...)") || execution ("% operator new[](...)") ||
13 execution ("% operator delete(...)") || execution ("% operator delete[](...)");

14 pointcut upcall() = within("Actionbox") && call ("% Action::action()");
15 pointcut enter () = thread () && execution ("% %::getup()") || execution ("% osekOS::start(...)");
16 pointcut leave () = thread () && (execution ("% %::hello()") || execution ("% %::liedown()"));

17 advice locked () || enter () : before () { lock.enter (); }
18 advice locked () || leave () : after () { lock.leave (); }
19 advice upcall () : before () { lock.leave (); }
20 advice upcall () : after () { lock.enter (); }
21 };

Figure 3. Variant 1: Aspect Definition

1 // The main PURE components: threads, the scheduler, IPC classes, ...
2 pointcut api_layer () = classes ("PURE::%");
3 pointcut thread () = (derived ("Entrant") || classes ("SeqPED%"|| "%Context"||
4 "osekChainStore"||"osekMultiStore")) && !api_layer ();
5 pointcut sched () = (derived ("TaskQueue") || classes ("Contest")) && !api_layer ();
6 pointcut ipc () = (derived ("Counter"||"Lineup"||"Booster"||"Alarm"||"Linkage") ||
7 classes ("Patient"||"Impatient")) && !api_layer ();
8 pointcut guard () = classes ("Date"||"Mediator");
9 pointcut driver () = derived ("Date") && !guard () && !api_layer ();

10 pointcut mm () = classes ("%Economist"||"Pile"||"Registers") && !api_layer ();

11 // Kernel entry points
12 pointcut enter () = execution ("% osekOS::start(...)");

13 // Upcalls that leave the kernel area or points where the lock must be released
14 pointcut leave() = call ("void Triplet::action()") || (execution ("void %::sleep(...)") &&
15 within (sched ()));

Figure 4. Variant 2: Component Definition

1 aspect IntSync2
2 {
3 // coarse-grained locking strategy: all these parts are locked with a single guard
4 pointcut kernel () = thread () || ipc () || sched () || driver () || mm ();

5 // lock all calls into the kernel from outside and unlock when the kernel is left
6 pointcut locked () = (call (kernel ()) && !within (kernel ())) || enter ();
7 pointcut unlocked () = leave ();

8 // the advice is simple now:
9 advice locked () : before () { lock.enter (); }

10 advice locked () : after () { lock.leave (); }
11 advice unlocked () : before () { lock.leave (); }
12 advice unlocked () : after () { lock.enter (); }
13 };

Figure 5. Variant 2: Aspect Definition



reduction in code size can be observed. The reason for this
is that we were able to remove classes from the inheritance
trees, which were only used to call synchronization primi-
tives before and after calling an overridden base class func-
tion. Of course, the synchronization calls did not vanish.
Instead, AspectC++ generates them mixed with the code of
other system layers, resulting in more compact code.

5 Related Work

As we have already mentioned earlier, the application of
AOP in the operating systems domain has not been studied
intensively yet.

An interesting approach to reconcile a traditionally de-
signed and implemented operating system with AOP is pur-
sued by Coady et al [3, 2]. In these two case studies the
authors use AspectC4 to re-engineer parts of the FreeBSD
v3.35 operating system exploiting the advantages of aspect-
oriented programming. In particular, the first case study [3]
implements the prefetching strategy of the filesystem in a
modular way using aspects. The second case study [2] im-
plements the prefetching and write cache strategies of the
Network File System (NFS) in a similar way in order to
show that AOP can assist in realizing an extensible design.

Another approach is pursued by the AOSA project [5],
which tries to support AOP in operating systems without
the need for a special language support. The compile-time
aspect weaving is replaced with anaspect moderator, a spe-
cial component in the system that dispatches all method
calls and redirects them to the aspects, which are imple-
mented as regular C++ classes. This approach allows only
for relatively simple run-time aspect weaving, but is at the
same time relatively easy to implement and allows to add
and remove aspects dynamically.

All the mentioned papers give an idea about the potential
of AOP. However, it remained unclear whether there are any
code size or performance penalties.

6 Conclusions and Future Work

With our case study we were able to show how a cross-
cutting concern in operating system code like the interrupt
synchronization strategy can be implemented in a modular
way. This allows to implement changes to this strategy with
minimal costs and is a step towards a truly component based
operating system.

For the implementation work we used AspectC++, an
aspect-oriented language extension for C++. The measure-
ments of code sizes prove that the increased modularity

4http://www.cs.ubc.ca/labs/spl/projects/
aspectc.html

5http://www.freebsd.org/

does not necessarily mean extra costs at run-time. In some
cases the AspectC++ code was even more compact. This re-
sult is very encouraging and we will continue our research
with other crosscutting concerns in operating system code.

A lesson we have learned during this work is that aspects
and component code should be designed together. Aspects
require pointcut definitions. If the component code was not
designed appropriately, these definitions sometimes consist
of hundreds of function names, eventually causing massive
maintenance problems. While integrated development en-
vironments with knowledge about the aspect concept could
possibly reduce the impact of this problem, a “design for
aspect intervention” can prevent it.

One area of future work is to explore the possibility how
run-time aspect weaving could be used to allow operating
systems to dynamically adapt global strategies to load situ-
ations.

References

[1] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-
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