
Workshop

Aspects

68 www.sdjournal.org Software Developer’s Journal 5/2005

On the CD:
The evaluation version
of the AspectC++ Add-
in for VisualStudio.NET
and the open source
AspectC++ Develop-
ment Tools (ACDT)
for Eclipse, as well as
example listings are
available on the ac-
companying CD.

AspectC++:
an AOP Extension for C++
More and more software developers are

getting in touch with aspect-oriented
programming (AOP). By providing the

means to modularise the implementation of cross-
cutting concerns, it stands for more reusability,
less coupling between modules, and better separa-
tion of concerns in general. Today, solid tool sup-
port for AOP is available, for instance, by JBoss
(JBoss AOP), BEA (AspectWerkz), and IBM (As-
pectJ) and the AJDT for Eclipse. However, all
these products are based on the Java language.
For C and C++ developers, none of the key players
offer AOP support – yet.

This article introduces AspectC++, which is an as-
pect-oriented language extension for C++. A compil-
er for AspectC++, which transforms the source code
into ordinary C++ code, has been developed as
an open source project. The AspectC++ project be-
gan with a research prototype in 2001 that has gained
maturity over the years. Today, the AspectC++ lan-
guage and weaver has been successfully applied
to a number of commercial projects in industry and
academia and IDE integration into Eclipse and Micro-
soft VisualStudio.NET make the first steps child's play.

Our AspectC++ introduction will start with an ex-
ample that can be considered the Hello World of
AOP. It will illustrate the basic language elements like
aspects, pointcuts, and advice, which some read-
ers might already know from the AspectJ language.
We will then quickly step beyond these AspectJ-like
language elements by looking into an AspectC++
version of the well-known observer pattern and into
Generic Advice. This unique AspectC++ feature com-
bines the power of aspects with generic and genera-
tive programming in C++.

Tracing – the Hello World of AOP
As an introductory example for AOP with AspectC++,
we will take a closer look at a very simple aspect.

The aspect Tracing modularises the implementa-
tion of output operations, which are used to trace
the control flow of the program. Whenever the exe-
cution of a function starts, the following aspect prints
its name:

#include <cstdio>

// Control flow tracing example

aspect Tracing {

 // print the function name before execution starts

 advice execution ("% ...::%(...)") : before () {

 std::printf ("in %s\n", JoinPoint::signature ());

 }

};

Even without fully understanding all the syntactical
elements shown here, some big advantages of AOP
should already be clear from the example. Without
using this simple aspect, which is only a few lines
long, one would have to augment all functions of
the program with an additional printf statement
to get the same result. In a large project, a style
guide would have to document this as a require-
ment and all programmers would have to read and
obey this global policy. As a result of this, the AOP
solution saves a lot of time, organisational effort,
and guarantees that no function will be forgotten.
At the same time the code, which is affected by
the aspect, is completely decoupled from the trac-
ing code, i.e. the printf. Not even <cstdio> has
to be included, because all this is done separately
by the aspect.

Aspects, advice and pointcuts
The Tracing example shows most of the language
elements that are responsible for these advantag-
es. We will start with the aspect, which is intended
as a module for the implementation of a crosscutting
concern. From the syntactical perspective an aspect
in AspectC++ is very much like a class in C++. How-
ever, besides member functions and data elements,
an aspect can additionally define advice. After the
advice keyword a pointcut expression defines where
the advice should affect the program (the join points),
while the part that follows the colon defines how the
program should be affected at these points. This is
a general rule for all kinds of advice in AspectC++.

Pointcut expressions
The pointcut expression in the example (where) is
execution("% ...::%(...)"). It means that the advice
should affect the execution of all functions that match

Olaf Spinczyk
Daniel Lohmann
Matthias Urban

Dr. Olaf Spinczyk is the founder and leader of the As-
pectC++ project. Daniel Lohmann uses AspectC++ in his
research on operating system development and works
on the design and evolution of the AspectC++ language
concepts. Both are employed at Friedrich-Alexander
University Erlangen-Nuremberg. Matthias Urban is the
main developer of the AspectC++ parser. He works
for pure-systems GmbH, where he is responsible for
AspectC++ support and the AspectC++ Add-In for
VisualStudio.NET.
Contact with the authors: os@aspectc.org,
dl@aspectc.org, mu@aspectc.org

Aspect Programming

69www.sdjournal.org Software Developer’s Journal 5/2005

the expression "% ...::%(...)". In "match expressions" the % and
... characters are used as wildcards. A percent (%) matches any
type (for example "% *" matches any pointer type) and also any
sequence of characters in identifiers (for example "xdr _ %"
matches all classes, which have a name that starts with xdr _).
An ellipsis (...) matches any sequence of types or namespaces
(for example "int foo(...)" matches any global function which
returns an int and is named foo). Eventually, the match expres-
sion "% ...::%(...)" matches any function in any class or name-
space.

Match expressions represent sets of named program en-
tities like functions or classes. Thus, match expressions are
already primitive pointcut expressions which describe a set of
join points in the static program structure (’static join points‘).
However, in our example we want advice for an event in the
dynamic control flow of the program, namely the execution of
functions. Therefore, the pointcut function execution() is used.
It yields all function execution join points for the functions
given as its argument.

Advice for dynamic join points
For dynamic join points AspectC++ supports three types of
code advice called before(), after() and around(). They all

implement an additional piece of program behaviour. In our
aspect Trace this behaviour is implemented by the printf()
statement, which follows before(). Syntactically this looks
like a function body and, indeed, we can understand the ad-
vice body as an anonymous member function of the aspect.
Instead of before() we could also use after() advice (or both)
in the example. In this case, the advice body would be run af-
ter the execution of a function has finished. An around() advice
body is executed instead of the control flow, which would
normally follow the dynamic join point.

Combined pointcut expressions
Pointcut expressions can be combined by using the set opera-
tors && (intersection), || (union) and ! (inversion). For
instance, the expression "% foo(int, ...)" || "int bar(...)"
matches any global function named foo which takes
an int as the first parameter and any global function named
bar which returns an int. In conjunction with pointcut func-
tions, we thereby get quite powerful expressions to describe
where advice should affect the program. For instance, we
might change the pointcut expression for our Tracing aspect
as follows:

advice call ("% ...::%(...)")

 && within ("Client") : before () {

 std::printf ("calling %s\n", JoinPoint::signature ());

}

The call() function yields all function call join points for
the given functions. In contrast to execution join points,
call join points take effect on the caller side, that is before,
after, or around an actual function call. The within() point-
cut function simply returns all join points in the given class-
es or functions. By giving advice to the intersection of call
("% ...::%(...)") (any function call) and within ("Client")
(any join point in the class Client), the aspect will now trace
only those function calls that are made from a method in the
class Client.

Join point API
In the advice body the expression JoinPoint::signature()
still waits for an explanation. As we know from the example,
it yields the function name that we print before the function
execution starts. The static member function signature()
is defined by the join point API. This is an API defined by
AspectC++ that allows aspect code to retrieve context infor-

Listing 1. The Abstract Aspect ObserverPattern

aspect ObserverPattern {

 // Data structures to manage subjects and observers

 ...

public:

 // Interfaces for each role

 struct ISubject {};

 struct IObserver {

 virtual void update(ISubject *) = 0;

 };

 // To be defined by the concrete derived aspect

 // subjectChange() matches all non-const methods

 pointcut virtual observers() = 0;

 pointcut virtual subjects() = 0;

 pointcut virtual subjectChange() =

 execution("% ...::%(...)" &&

 !"% ...::%(...) const")

 && within(subjects());

 // Add new baseclass to each subject/observer class

 // and insert code to inform observers

 advice observers() : baseclass(IObserver);

 advice subjects() : baseclass(ISubject);

 advice subjectChange() : after() {

 ISubject* subject = tjp->that();

 updateObservers(subject);

 }

 // Operations to add, remove and notify observers

 void updateObservers(ISubject* sub) { ... }

 void addObserver(ISubject* sub, IObserver* ob) { ... }

 void remObserver(ISubject* sub, IObserver* ob) { ... }

};

Figure 1. Crosscutting in the Observer Pattern

�����������

��������

�����������������������

�������� ���������

���������������

��

������

����������

������

�������������

�����������

������

�������������

������������

Workshop

Aspects

70 www.sdjournal.org Software Developer’s Journal 5/2005

mation from or about the join point for which it is running.
We will see later that such context information is an indis-
pensable feature for many commercial aspects.

Lessons learned
Although the Tracing example was implemented by only a few
lines of code, we introduced a lot of AspectC++ concepts.
Let's summarise them:

l Crosscutting Concern: a concern of an implementation,
which affects many different parts of a program.

l Aspect: provides a modular implementation of a crosscut-
ting concern by defining advice.

l Join Point: either an event in the control flow (dynamic
join point) or an element of the static program structure
(static join point) at which advice affects the program.

l Pointcut: a set of join points.
l Match Expression: a pattern which is matched against

the signatures of named program entities, i.e. elements
of the static program structure. Thus, match expressions
are primitive pointcut expressions, which yield static join
points.

l Pointcut Expression: is used to define a pointcut. Point-
cut expressions are composed by match expressions and
pointcut functions. They define where advice should affect
the program.

l Advice: defines how an aspect affects the program at
a given pointcut. In the case of advice for dynamic join
points before(), after(), or around() advice can be used
to implement additional behaviour.

l Join Point API: can be used in advice code to retrieve con-
text information from the current join point via the built-in
pointer JoinPoint *tjp.

What's next?
Tracing is a typical development aspect. In contrast to produc-
tion aspects these aspects are only used during the develop-
ment of a program, e.g. for the purpose of debugging, qual-
ity assurance and optimisation. Production aspects are
part of the final software product, which is shipped to the
users. Therefore, we recommend to start AOP with devel-
opment aspects and gather some experience first. However,
in this article we will, of course, not stop after the Hello

World program of AOP! Our next example will be a produc-
tion aspect that will show some more advanced AspectC++
features that especially deal with crosscutting in the static
program structure.

Observer Pattern in AspectC++
Today, it is state of the art to use design patterns from the
“Gang of Four” to develop object-oriented software. One of
the most popular patterns is Observer, which is illustrated by
the class diagram in Figure 1. This pattern can be applied
if an object manages a state (the Subject – a ClockTimer
object) and an arbitrary number of other objects (the
Observers – DigitalClock and AnalogClock instances)
should be informed when the state changes. As the class
diagram shows, the subject/observer relationship between
our three application classes can be established by deriving
the ClockTimer from a reusable ISubject, which manages the
list of observer objects, and by deriving the observers from
the abstract IObserver class. Furthermore, all state chang-
ing functions (SetTime() and Tick()) have to be extended by
a call to updateAll() to notify all observers about the change.
On the observer side the DigitalClock and AnalogClock

have to be extended by an update() function that is required
by the abstract base class. Overall, a quite high number of
error-prone modifications have to be performed on the code
of our three classes. Figure 1 illustrates by highlighting in
red, which parts of the implementation are affected. From
the aspect-oriented point of view the observer protocol con-
cern statically and dynamically crosscuts the participating
classes ClockTimer, DigitalClock and AnalogClock. Hence, it
is better separated out into an aspect.

Dealing with the dynamic crosscutting
We already know the necessary AspectC++ language
elements to implement the dynamic crosscutting in this
example. The observer protocol requires all state-chang-
ing methods in the subject class to call updateAll() before
returning. In C++, all non-const member functions of a class
can be considered as state-changing. The following advice
definition inserts the necessary calls to updateAll() into our
ClockTimer class:

advice execution("% ClockTimer::%(...)") &&

 !execution("% ClockTimer::%(...) const") : after () {

 updateAll ();

}

You can read the pointcut expression of this advice as ‘A join
point is an element of the resulting pointcut if it is the execu-
tion of a ClockTimer member function and not the execution
of a ClockTimer member function declared as const ’. The
reason for this and not kind of expression is that const in
a match expression is interpreted as a restriction. If const is
not given, both const and non-const functions are matched.

Introductions – implementing static crosscutting
The static crosscutting in the example can be implemented
by an AspectC++ feature called introductions. An introduc-
tion is another kind of advice for which the where is a pointcut
expression, which represent a set of classes, while the how is

Listing 2. Concrete Observer Implementation

#include "ObserverPattern.ah"

#include "ClockTimer.h"

aspect ClockObserver : public ObserverPattern {

 // define the pointcuts

 pointcut subjects() = "ClockTimer";

 pointcut observers() = "DigitalClock"||"AnalogClock";

public:

 advice observers() :

 void update(ObserverPattern::ISubject* sub) {

 Draw();

 }

};

Aspect Programming

71www.sdjournal.org Software Developer’s Journal 5/2005

a declaration, which should be introduced into the classes. For
example, the update() function could be introduced into the
observer classes as shown here:

advice "DigitalClock"||"AnalogClock" : void update() {

 Draw();

}

Note that introduced members are not only visible to the
aspect. The update() function can be called, for instance, by
other members of DigitalClock or AnalogClock as if it were
an ordinary member function. However, introductions are not
restricted to member functions. They can be used to introduce
data members, nested classes and anything else that is syn-
tactic-ally allowed inside a class definition.

Base class introductions are a special kind of introduc-
tion, which introduce new classes into the list of base classes.
They are very helpful in our example, as the subject and the
observers have to derive from the ISubject and IObserver
roles, respectively:

advice "DigitalClock"||"AnalogClock" : baseclass(IObserver);

advice "ClockTimer" : baseclass(ISubject);

Virtual pointcuts and abstract aspects
Now we have all the elements together to assemble
an ObserverPattern aspect for our example. However, apply-
ing the observer protocol to a set of classes is a recurring task
– we want to achieve a reusable implementation. For this pur-
pose we need two further AspectC++ language features.

The first feature is the ability to give pointcuts a name.
For example, the pointcut expression "DigitalClock" ||

"AnalogClock", which has been used several times, can
become a named pointcut observers():

pointcut observers() = "DigitalClock"||"AnalogClock";

An even more interesting feature of named pointcuts is that
they can be declared as virtual or pure virtual. Pure virtual
pointcuts can be used by advice as ordinary pointcuts. An as-
pect that uses pure virtual pointcuts only defines how a cross-
cutting concern is implemented, but not where it will affect the
program.

pointcut virtual observers() = 0;

pointcut virtual subjects() = 0;

advice observers() : baseclass(IObserver);

advice subjects() : baseclass(ISubject);

As a consequence the aspect is incomplete – it is an abstract
aspect. This is very similar to abstract classes with pure virtu-
al member functions, which can not be used for instantiation.
Abstract aspects do not affect the program as long as there is
no derived aspect, which defines the pure virtual pointcut of
its base aspect.

Aspect inheritance
If we put everything together we end up with the reusable
ObserverPattern aspect as shown in Listing 1. ObserverPattern
is completely independent of our three classes in the exam-

ple. It only defines how the observer pattern crosscuts an im-
plementation, but not where. This has to be done by a derived
aspect, shown in Listing 2. Our derived ClockObserver aspect
does so by defining the two inherited pure virtual pointcuts.
It also implements the introduced update() function in an ob-
server-specific way.

Lessons learned
So we finally end up with two aspects. The reusable ab-
stract base aspect ObserverPattern encapsulates the im-
plementation of the observer protocol. This is a clear ad-
vantage, as the corresponding design decision would oth-
erwise be hard-wired in dozens of classes. For instance, by
modifying this aspect we could easily switch between an im-

Listing 3. An Aspect to Throw Win32 Errors
as Exceptions

#include <strstream>

#include "win32-helper.h"

aspect ThrowWin32Errors {

 using namespace std;

 // template metaprogram to generate code for

 // streaming a comma-separated sequence of arguments

 template< class TJP, int N >

 struct stream_params {

 static void process(ostream& os, TJP* tjp) {

 os << *tjp->arg< TJP::ARGS - N >() << ", ";

 stream_params< TJP, N - 1 >::process(os, tjp);

 }

 };

 // specialization to terminate the recursion

 template< class TJP >

 struct stream_params< TJP, 1 > {

 static void process(ostream& os, TJP* tjp) {

 os << *tjp->arg< TJP::ARGS - 1 >();

 }

 };

 advice call(win32::Win32API()) : after() {

 if(win32::IsErrorResult(*tjp->result())) {

 ostringstream os;

 DWORD code = GetLastError();

 os << "WIN32 ERROR " << code << ": "

 << win32::GetErrorText(code) << endl;

 os << "WHILE CALLING: "

 << tjp->signature() << endl;

 os << "WITH: " << "(";

 // Generate joinpoint-specific sequence of

 // operations to stream all argument values

 stream_params< JoinPoint, JoinPoint::ARGS >::

process(os, tjp);

 os << ")";

 throw win32::Exception(os.str(), code);

 }

 }

};

Workshop

Aspects

72 www.sdjournal.org Software Developer’s Journal 5/2005

plementation, which stores an observer list in each subject
instance, and an implementation, which manages a central
data structure for that purpose.

The aspect ClockObserver inherits from ObserverPattern
and thereby performs the binding of the abstract observer and
subject roles to the concrete application classes ClockTimer,
DigitalClock and AnalogClock. This is another advantage, as it
is thereby no longer necessary to pollute the application class-
es themselves with pattern-specific code. They can remain
untouched, thus keeping their comprehensibility and reusa-
bility.

With the ObserverPattern example, we introduced some
more important concepts of AspectC++. Let's again summa-
rise them:

• Introduction: advice for static join points. Introductions can
be used to extend the static structure of classes by addi-
tional elements like member functions, data members, or
local classes.

• Baseclass Introduction: a special form of introduction
to extend the list of base classes a class inherits from.

• Named Pointcut: a pointcut expression that can be referred
to by an identifier. Named pointcuts can be declared as vir-
tual or pure virtual, thus allowing to override them in an in-
herited aspect.

• Abstract Aspect: an aspect which contains at least one
pure virtual pointcut or method. Abstract aspects are
incomplete, thus not affecting the program until completed
by a derived aspect.

• Aspect Inheritance: like class inheritance, aspects can
inherit from other aspects.

What's next?
Applications of aspects are not restricted to tracing and
patterns. There are many crosscutting concerns and soon
after learning the AOP basics, programmers automatically
identify them and long for tools to implement them in a mod-
ular way. We will now look into our last example, which
describes another production aspect. From the techni-
cal perspective it will show how aspect implementations
can benefit from the various types of information provided
by the join point API, together with generic and generative
programming techniques.

Aspects with Advanced C++
C++ programmers often have to deal with legacy C libraries
like the Win32 API. Apart from the fact that the API is not
object-oriented, the error handling of the library functions
do not fit into exception-based error handling, which is fa-
voured by many programmers today. The transformation of
the C-style error handling towards an exception-based ap-
proach would be a laborious and error-prone task. Further-
more, it is a crosscutting concern, because all the Win32
API functions would have to be wrapped by a function that
checks the result and raises an exception if an error was
detected.

The ThrowWin32Errors aspect shown in Listing 3 does
the same with less work for the programmer. By compiling
the application with this aspect the Win32 API behaves as
if it were reporting errors by throwing exceptions. Howev-

er, the implementation is not trivial and should therefore be
explained.

Detecting Win32 errors
The first step towards an exception-based propagation of
errors is to detect if the invocation of a Win32 function has
failed. Win32 API functions indicate an error situation by
returning a special magic value. Detecting failed API calls is
therefore, once again, a problem of dynamic crosscutting. The
general idea is to give after advice for all calls to Win32 func-
tions. In the advice body, the return value should be checked
to throw an exception in the case of an error:

aspect ThrowWin32Errors{

 advice call(win32::Win32API()) : after() {

 if(<magic value> == *tjp->result()) throw ...

 }

};

The advice affects all API functions that are described by
the (externally defined) named pointcut win32::Win32API(),
which contains all Win32 API functions (Listing 4). In the ad-
vice body, the return value of the called Win32 function is
retrieved via the tjp->result() method of the join point API.
This method returns a pointer to the actual result value, thus

Listing 4. The win32helper.h File

namespace win32 {

 struct Exception {

 Exception(const std::string& w, DWORD c) {

 ...

 }

 };

 // Check for "magic value" indicating an error

 inline bool IsErrorResult(HANDLE res) {

 return res == NULL || res == INVALID_HANDLE_VALUE;

 }

 inline bool IsErrorResult(HWND res) {

 return res == NULL;

 }

 inline bool IsErrorResult(BOOL res) {

 return res == FALSE;

 }

 ...

 // Translates a Win32 error code into a readable text

 std::string GetErrorText(DWORD code) {

 ...

 }

 pointcut Win32API() = "% CreateWindow%(...)"

 || "% BeginPaint(...)"

 || "% CreateFile%(...)"

 || ...

} // namespace Win32

Aspect Programming

73www.sdjournal.org Software Developer’s Journal 5/2005

making it even possible to modify the result. Here we just
compare it with the magic value that is returned by the API
function to indicate an error.

The advice definition, however, does not work yet. The
problem is that the actual magic value to be compared
with the result is not always the same. It depends on the
return type of the called API function. Many Win32 functions
are simply of the type BOOL and indicate an error by return-
ing FALSE. However, other API functions use types like HWND,
ATOM, HDC, or HANDLE. For each of these types there is some
associated magic value that is returned in the case of
an error. ATOM functions, for instance return 0; HANDLE func-
tions return either NULL or INVALID _ HANDLE _ VALUE.

Generic advice
As a possible solution for this problem, we might filter the
functions in the win32::Win32API() pointcut for each return type
and give specific advice for it:

aspect ThrowWin32Errors {

 advice call(win32::Win32API() && "BOOL %(...)") : after() {

 if(FALSE == *tjp->result()) throw ...

 }

 advice call(win32::Win32API() && "HANDLE %(...)") : after() {

 if((NULL == *tjp->result())

 || (INVALID_HANDLE_VALUE == *tjp->result())) throw

...

 }

... // and so on

};

This solution has some drawbacks though; we have to write
almost the same advice definition over and over again. Even
worse, if we forget a type or Microsoft introduce a new one, the
related API functions would unknowingly be missed by the as-
pect, as they are not matched by any of the existing advice defi-
nitions. Therefore, we strive for a better, less fragile solution:

aspect ThrowWin32Errors {

 advice call(win32::Win32API()) : after() {

 if(win32::IsErrorResult(*tjp->result())) throw ...

 }

};

Now we have separated out all type-dependent code (the com-
parison with the type-dependent magic values) into an indi-
vidual win32::IsErrorResult() function, which has to be over-
loaded for each return type (Listing 4). Depending on the
actual static type of *tjp->result(), the compiler looks for
a compatible version of win32::IsErrorResult() and, more
importantly, complains if one cannot be found. It is no long-
er possible that we will unknowingly miss some functions, just
because their return type was not included.

The above advice definition is an example for Generic
Advice. It is generic, because it adapts its actual implemen-
tation (magic value to test for) with respect to some type
information (return type of the matched function) of the
current join point context. This is very similar to the tech-
niques used in templates libraries for generic programming,
like the STL.

Reporting Win32 errors
Now that we know how to detect failed Win32 API calls in our
aspect reliably, the next step is to report them as an excep-
tion. The exception object should include all context informa-
tion that can be helpful to figure out the reason for the actual
failure. Besides the Win32 error code, this should include
a user-friendly string describing the error, the signature of
the called function (retrieved with JoinPoint::signature())
and the actual parameter values that were passed to the
function.

Generative advice
The tricky part is the generation of a string of the actual
parameter values. The idea is to stream each parameter into
a std::ostringstream object. However, as the advice affects
functions with very different signatures, its implementation

Table 1. Excerpt from the AspectC++ Join Point API

Compile-time types and enumerators
That type of the affected class
Target type of the destination class (for

call join-points)
Arg<i>::Type
Arg<i>::ReferredType

type of the i'th argument
with 0 \leq i < ARGS

Result result type
ARGS number of arguments

Runtime static methods
const char *signature() signature of the affected function

Runtime non-static methods
void proceed() execute original code (around ad-

vice)
That *that() object instance referred to by this
Target *target() target object instance of a call

(for call join-points)
Arg<i>::ReferredType
*arg()

argument value instance of the
i'th argument

Result *result() result value instance

Figure 2. ACDT in Action

Workshop

Aspects

74 www.sdjournal.org Software Developer’s Journal 5/2005

has to be generic with respect to the number and types of
function arguments. The sequence of operator <<(std::os-
tream&, T) calls has therefore to be generated according
to the affected function's signature. This is realised (List-
ing 3) by feeding the information provided by the join point
API (Table 1) into a small template meta-program. This tem-
plate meta-program is instantiated by the advice code with
the JoinPoint type and iterates, by recursive instantiation of
the template, over the join-point-specific argument type list
JoinPoint::Arg<I>. For each argument type, a stream _ par-

ams class with a process() method is generated, which, later
at runtime, will stream the typed argument value (retrieved
via tjp->arg<I>()) and recursively call stream _ params::proc-

ess() for the next argument.

Lessons learned
As demonstrated by ThrowWin32Errors, aspects can not only
be used with object-oriented software, but provide bene-
fits for improving legacy C-style code too. They can further-
more be implemented in a very generic way by exploiting
other advanced C++ techniques like generic and genera-
tive programming. The AspectC++ concepts for this combi-
nation are:

• Generic Advice: advice that uses static type information
from the current join point context to instantiate or bind
generic code,

• Generative Advice: advice with an implementation that is
partly generated by the instantiation of template meta-pro-
grams using static type information from the current join
point context.

What's next?
You have now seen the most important language con-
structs of AspectC++. The Tracing, ObserverPattern, and
ThrowWin32Error aspects are, of course, just some exam-
ples for the very different flavours of crosscutting that can be
addressed by AOP. You probably already have some ideas for
using AOP in your own C++ projects. We will now take a look
at the available AspectC++ tools for this purpose.

Tool Support
AOP provides the means to modularise the implementation
of crosscutting concerns into aspects. As a result, the aspect
code has to be woven into the affected components to build
the final program. For this task an aspect weaver is required.

Whilst additional tool support for join point visualisation is
not required, it is strongly recommended – aspects can po-
tentially modify the program at any place. In larger projects,
this implies the danger of surprising program behaviour, if
developers who work on the component code are not aware
of the aspects. Therefore, all join points which are actually
affected by an aspect should be marked automatically in the
code. Then developers can easily see where aspects affect
their code.

AspectC++ weaver
The AspectC++ weaver ac++ is a source-to-source weav-
er that transforms AspectC++ programs into C++ programs.
Hence, it can be used in conjunction with any standard-com-
pliant C++ compiler as a back-end – g++ (3.x) and Microsoft
C++ (VisualStudio.NET) are particularly supported.

In order to identify join points correctly, ac++ performs
a complete syntactical and semantical analysis of its As-
pectC++ input. Considering the complexity of the C++ lan-
guage, the project can be regarded as highly ambitious.
Nevertheless, ac++ can already parse commercial C++
code and even complex templates (as defined by the STL
or Microsoft's ATL) are no longer a problem. More advanced
template libraries, like Boost, will be supported in the near
future.

ACDT plugin for Eclipse
The AspectC++ Development Tool for Eclipse (ACDT) is
an Eclipse plugin based on the code of the CDT project. It ex-
tends the C++ Development Tools by adding syntax highlight-
ing of the AspectC++ keywords, an extended outline (shows
aspects, advice, and pointcuts, see Figure 2), a builder for
Managed Make projects and join point visualisation in the out-
line view and the source code editor even in Standard Make
Projects based on your own Makefile.

AspectC++ add-In for VisualStudio.NET
A commercial VisualStudio.NET extension for AspectC++ is
available from www.pure-systems.com. It supports various
Visual C++ specific language extensions and is therefore the
first choice for users accustomed to the VisualStudio IDE and
the Microsoft Visual C++ compiler. A free evaluation version is
available.

Summary and Conclusions
Mostly known only from the Java world, AOP is suitable for
C++ projects as well. This article introduced the most impor-
tant concepts and language features of AspectC++. Program-
mers can benefit from an aspect-oriented language exten-
sion in various ways. Development aspects like Tracing are
a good start for using AOP and can already save program-
mers a lot of work. In some commercial projects we measur-
ed that about 25% of the lines of code were related to trac-
ing, profiling, or constraint checks. Production aspects can be
found everywhere. As the examples have shown, they can
simplify the design, the implementation and even the handling
of legacy libraries.

After reading this article you will have already mastered
the first steps of going AOP.

On the Web
l AspectC++ project homepage
 http://www.aspectc.org/
l AspectC++ Development Tools (ACDT) for Eclipse
 http://acdt.aspectc.org/
l Web portal for everything related to aspect-oriented software

development (AOSD)
 http://www.aosd.net/
l The company which offers the AspectC++ Add-In for Visual

Studio .NET and commercial support for AspectC++ users
 http://www.pure-systems.com/

