
Book Title
Book Editors
IOS Press, 2003

1

Advances in AOP with AspectC++1

Olaf Spinczyka,2, Daniel Lohmanna and Matthias Urbanb

aFriedrich-Alexander University Erlangen-Nuremberg
bpure::systems GmbH, Magdeburg, Germany

Abstract. Often declared dead or at least dying, C/C++ is still the lingua franca
of many application domains. Aspect-Oriented Programming (AOP) is a program-
ming paradigm that supports the modular implementation of crosscutting concerns.
Thereby, AOP improves the maintainability, reusability, and configurability of soft-
ware in general. Although already popular in the Java domain, AOP is still not
commonly used in conjunction with C/C++. For a broad adoption of AOP by the
software industry, it is crucial to provide solid language and tool support. However,
research and tool development for C++ is known to be an extremely hard and te-
dious task, as the language is overwhelmed with interacting features and hard to
analyze. Getting AOP into the C++ domain is not just technical challenge. It is also
the question of integrating AOP concepts with the philosophy of the C++ language,
which is very different from Java. This paper describes the design and development
of the AspectC++ language and weaver, which brings fully-fledged AOP support
into the C++ domain.

Keywords. AOP, C++, AspectC++, Programming Languages

1. Motivation

The C/C++ programming language1 is frequently declared dead or at least dying. Actu-
ally, it is still the lingua francain the real world of software industry. There are several
reasons for the ongoing success of a language that is often criticized for its complexity.
The most important one is the existing code base, which probably is of the dimension
of some billion lines of code. Due to its multi-paradigm language design, C++ provides
the unique ability to combine modern software development principles with high source-
level backward compatibility to this enormous code base. It integrates classical proce-
dural programming, object-oriented programming and, by the means of C++ templates,
even generic and generative programming into a single language. Another main reason
for the ongoing usage of C/C++ is runtime and memory efficiency of the generated code.
For domains, where efficiency is a crucial property, there is still no alternative in sight.

In face of its importance in the real world, C/C++ plays a relatively small role in
research activities and tool development related toAspect-Oriented Programming (AOP)

1This work was partly supported by the German Research Council (DFG) under grant no. SCHR 603/4
2Correspondence to: Olaf Spinczyk, Martenstr. 1, D-91058 Erlangen, Germany. Tel.: +49 9131 85 27906;

Fax: +49 9131 8528732; E-mail: os@cs.fau.de
1Throughout this paper, we use “C/C++” as an abbreviation for “C and C++” and refer to it as a single

language. C, as it is used today, is basically a subset of C++ (ignoring some minor differences).

2 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

[14]. This is surprising, as the most frequently mentioned examples foraspects(synchro-
nization, monitoring, tracing, caching, remote transparency...), are particularly impor-
tant concernsespeciallyin the C/C++ dominated domain of (embedded) system software
[23].

Probably the biggest problem in research and tool development for C++ is the lan-
guage itself. On the technical level, one has to deal with the extraordinary complex syn-
tax and semantics. On the conceptual level, one has to be very careful when integrat-
ing new concepts like AOP into a language that already supports multiple paradigms.
In the following, we discuss some of the peculiarities and difficulties of C++ from the
perspective of an aspect weaver.

1.1. Technical Level

Developing astandard-compliant parser for the C++ syntax is just a nightmare. It is
an extremely hard, tedious and thankless task. Additionally, to support a substantial set
of join point types, an aspect weaver has to perform afull semantic analysis, and the
semantics of C++ is even worse. Pretty basic things, like type deduction and overload
resolution, are very complicated due to automatic type conversions and namespace/ar-
gument dependent name lookup rules. However, all this gets a most significant raise in
complexity if it comes to thesupport of templates. The C++ template language is a
Turing-complete language on its own [8]. Template meta-programs are executed by the
compiler during the compilation process. To support join points in template code, an as-
pect weaver has to do the same. It has to perform afull template instantiation .
Another problem is the C/C++translation model that is built on the concept ofsin-
gle translation units, whereas an aspect weaver typically prefers aglobal view on the
project. This and other oddities as theC preprocessormake it difficult to integrate as-
pect weaving into the C++ tool chain. Moreover, even if the language is standardized,
in the real world one has to face a lot ofcompiler peculiarities. Proprietary language
extensions, implementation bugs and “99% C++ standard conformance” are common
characteristics among major compilers.

1.2. Conceptual Level

C++ has a powerful butcomplex static type system, with fundamental and class types,
derived types (pointer, array, reference, function), cv-qualifiers (const, volatile) and so
on. On the other hand, C++ offers (almost)no runtime type information which facil-
itates a unified access to instances of any type at runtime. This focus on static typing
has to be reflected in an aspect language for C++, e.g. in the way type expressions are
matched and join point-specific context is provided. Moreover, C++ integratesmultiple
programming paradigms into a single language. Matching and weaving has not only to
be supported in classes, but also inglobal functions, operator functions andtemplate
code.

1.3. Our Contribution

AspectC++ is a general purpose aspect-oriented language extension to C++ designed by
the authors. It is aimed to bring fully-fledged AOP support into the C++ domain. Since
the first language proposal and prototype weaver implementation [21], AspectC++ has

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 3

significantly evolved. The 1.0 version is going to be released in the third quarter of 2005.
While being strongly influenced by the AspectJ language model [16,15], AspectC++
supports in version 1.0 all the additional concepts that are unique to the C++ domain.
This ranges from global functions, operators, const correctness and multiple inheritance
up to weaving in template code and join point-specific instantiation of templates [18].

This paper describes the design and implementation of the AspectC++ language. On
the conceptual level it shows, how we integrated AOP concepts into a language as com-
plex as C++. On the technical level, some interesting details about the weaver implemen-
tation are presented. On both levels, the paper focuses on the peculiarities and difficulties
discussed in the previous section – and how we solved them in AspectC++.

The paper is organized as follows: In the next section, we discuss related work. Sec-
tion 3 then describes the primary design goals and rationale of AspectC++. Afterwards
in section 4, we concentrate on the conceptual level by describing the AspectC++ lan-
guage and how it is integrated into C++. This is followed by two real-world examples in
section 5. Section 6 provides an overview on the weaver and thereby discusses, how we
addressed the technical level. Finally, we draw a conclusion from our work in section 7.

2. Related Work

2.1. Aspect Languages

As already mentioned, AspectC++ adopts the language model introduced byAspectJ
[16], which is probably the most mature AOP system for the Java language. The AspectJ
language model is also used byAspectC, a proposed AOP language extension for C. Even
though there is no weaver for AspectC available, it was successfully used to demonstrate
the benefits of AOP for the design and evolution of system software [5,6].

2.2. Early AOP Approaches.

Most of the approaches considered as “roots of AOP”, likeSubject-Oriented Program-
ming [13], Adaptive Programming[17] or Composition Filters[3] provided a C++ lan-
guage binding in the beginning. However, with the rising of Java, the C++ support was
almost discontinued.

2.3. AOP in Pure C++

A number of attempts have been suggested to “simulate” AOP concepts in pure C++
using advanced template techniques [7], macro programming [9] orPolicy-based Design
[1]. In some of these publications it is claimed that, in the case of C++, a dedicated aspect
language like AspectC++ is not necessary. However, these approaches have the common
drawback that a class has always to beexplicitly prepared to be affected by aspects,
which makes it hard to use them on existing code. Moreover, aspects have to beexplicitly
assigned to classes, as a pointcut concept is not available. To our understanding, an AOP
language should not make any compromise regarding “obliviousness and quantification”
[10]. The non-invasive and declarative assignment of aspects to classes is at heart of
aspect-oriented programming.

4 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

2.4. Other C++ Language Extensions

OpenC++ [4] is a MOP for C++ that allows a compiled C++ metaprogram to transform
the base-level C++ code. The complete syntax tree is visible on the meta-level and ar-
bitrary transformations are supported. OpenC++ provides no explicit support for AOP-
like language extensions. It is a powerful, but somewhat lower-level transformation and
MOP toolkit. Other tools based on C++ code transformation likeSimplicissimus[20] and
CodeBoost[2] are mainly targeted to the field of domain-specific program optimizations
for numerical applications. While CodeBoost intentionally supports only those C++ fea-
tures that are relevant to the domain of program optimization, AspectC++ has to support
all language features. It is intended to be a general-purpose aspect language.

3. AspectC++ Goals and Rationale

3.1. Primary Design Goals

AspectC++ is being developed with the following goals in mind:

AOP in C++ should be easy.We want practitioners to use AspectC++ in their daily
work. The aspect language has to be general-purpose, applicable to existing
projects and needs to be integrated well into the C++ language and tool chain.

AspectC++ should be strong, where C++ is strong.Even though general-purpose,
AspectC++ should specifically be applicable in the C/C++ dominated domains
of “very big” and “very small” systems. Hence, it must not lead to a significant
overhead at runtime.

3.2. Design Rationale

The primary goals of AspectC++, as well as the properties of the C++ language itself,
led to some fundamental design decisions:

“AspectJ-style” syntax and semantics,as it is used and approved. Moreover, AspectJ
was designed with very similar goals (e.g.“programmer compatibility” [16]) in
mind.

Comply with the C++ philosophy, as this is crucial for acceptance. As different as C++
is from Java, as different AspectC++ has to be from e.g. AspectJ.

Source-to-Source weaving,as it is the only practicable way to integrate AspectC++
with the high number of existing tools and platforms. The AspectC++ weaver
transforms AspectC++ code into C++ code.

Support of C++ Templates,even if it makes thingsa lot more difficult. The whole C++
standard library is build on templates, they are a vital part of the language.

Avoid using expensive C++ language featuresin the generated code, like exception
handling or RTTI, as this would lead to a general runtime overhead.

Careful, minimal extension of the C++ grammar, as the grammar of C++ already is a
very fragile building, which should not be shaken more than absolutely necessary.

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 5

4. The Language

The aim of this section is, to provide an overview of the AspectC++ language and to
some of its concepts in detail. The AspectC++ syntax and semantics is very similar to
AspectJ. The basics are therefore described only briefly here, which leaves more space
to focus on C++-specific concerns and those parts of the language that are intentionally
different from AspectJ.

4.1. Overview and Terminology

AspectC++ is an extension to the C++ language. Every valid C++ program is also a valid
AspectC++ program2. As in AspectJ, the most relevant terms arejoin point andadvice.
A join point denotes a specific position in the static program structure or the program
execution graph, where someadviceshould be given. Supported advice types include
code advice(before, after, around),introductions(also known as inter-type declaration in
AspectJ) andaspect orderdefinitions. Join points are given in a declarative way by a join
point description language. Each set of join points, which is described in this language, is
called apointcut. The sentences of the join point description language are calledpointcut
expressions. The building blocks of pointcut expressions arematch expressions(to some
degree comparable to “Generalized Type Names” (GTNs) and “Signature Patterns” in
AspectJ), which can be combined usingpointcut functionsand algebraic operations.
Pointcuts can benamedand thereby reused in a different context. While named pointcuts
can be defined anywhere in the program, advice can only be given byaspects.The aspect

aspect TraceService {
pointcut Methods() = % Service ::%(...);
advice call (Methods()) : before () {

cout << "Service function invocation" << endl;
}};

givesbefore adviceto all calls to functions defined by the pointcutMethods(), which is in
turn defined as all functions of the class or namespaceService, like void Service::foo()

or int Service::bar(char*). The special% and... symbols are wildcards, comparable to
* and.. in AspectJ. The percent wildcard (%) matches any name (or a part of a name)
of a C++ entity. The ellipsis (...) matches any sequence of argument types (including
the Cva_arg argument type used by functions likeprintf), namespaces or template pa-
rameters.3 More examples for match expressions can be found in Figure 1-d. A list of
the pointcut functions and algebraic operations currently supported by AspectC++ can
be found in Figure 1-e.

4.2. AspectC++ Grammar Extensions

Figure 1-a shows the AspectC++ extensions to the C++ grammar. Probably the most
important design decision for keeping the set of grammar extensions small and simple
was to usequoted match expressions. By quoting match expressions, pointcuts can be

2as long as it does not use one of the AspectC++ keywordsaspect, advice, or pointcut as an identifier.
3AspectJ supports with “+” a third wildcard for subtype matching. In AspectC++ this is realized by the

derived() pointcut function.

6 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

a) Syntax Extensions
The AspectC++ syntax is an extension to the C++ syntax defined
in the ISO/IEC 14882:1998(E) standard.

class-key:
aspect

declaration:
pointcut-declaration
advice-declaration

member-declaration:
pointcut-declaration
advice-declaration

pointcut-declaration:
pointcut declaration

pointcut-expression:
constant-expression

advice-declaration:
advice pointcut-expression: order-

declaration
advice pointcut-expression: decla-

ration

order-declaration:
order (pointcut-expression-list)

pointcut-expression-list:
pointcut-expression
pointcut-expression, pointcut-

expression-list

b) Aspects

aspect A { ... };
defines the aspectA

aspect A : public B { ... };
A inherits from class or aspectB

c) Advice Declarations

advice pointcut : before (...) {...}
the advice code is executed before the join points in the
pointcut

advice pointcut : after (...) {...}
the advice code is executed after the join points in the
pointcut

advice pointcut : around (...) {...}
the advice code is executed in place of the join points in
the pointcut

advice pointcut : order (high, ...low);
high and low are pointcuts, which describe sets of aspects.
Aspects on the left side of the argument list always have a
higher precedence than aspects on the right hand side at
the join points, where the order declaration is applied.

If the advice isnot recognized as being of a predefined kind
(i.e. before, after, around, or order), it is regarded as anin-
troduction of a new method, attribute, or type to all join points
in the pointcut.

d) Match Expressions

Type Matching

"int"
matches the C++ built-in scalar typeint

"% *"
matches any pointer type

Namespace and Class Matching

"Chain"
matches the class, struct or unionChain

"Memory%"
matches any class, struct or union whose name starts with
“Memory”

Function Matching

"void reset()"
matches the functionreset having no parameters and re-
turning void

"% printf(...)"
matches the functionprintf having any number of param-
eters and returning any type

"% ...::%(...)"
matches any function, operator function, or type conver-
sion function (in any class or namespace)

"% ...::Service::%(...) const"
matches any const member-function of the classService
defined in any scope

"% ...::operator %(...)"
matches any type conversion function

Template Matching

"std::set<...>"
matches all template instances of the classstd::set

"std::set<int>"
matches only the template instancestd::set<int>

"% ...::%<...>::%(...)"
matches any member function from any template class in
any scope

e) Predefined Pointcut Functions

Functions

call (pointcut) N→CC
provides all join points where a named entity in thepoint-
cut is called.

execution (pointcut) N→CE
provides all join points referring to the implementation of
a named entity in thepointcut.

construction (pointcut) N→CCons
all join points where an instance of the given class(es) is
constructed.

destruction (pointcut) N→CDes
all join points where an instance of the given class(es) is
destructed.

pointcut may contain function names or class names. A class
name is equivalent to the names of all functions defined within
its scope combined with the|| operator (see below).

Figure 1. AspectC++ Language Quick Reference

parsed with the ordinary C++ expression syntax. The real evaluation of the pointcuts it-
self can be postponed to a separate parser. This clear separation also helps the user to dis-
tinguish on the syntax level between ordinary code expressions and match expressions,
which are quite different concepts. Additionally, it keeps the match expression language
extendable.

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 7

Control Flow

cflow (pointcut) C→C
captures join points occuring in the dynamic execution
context of join points in thepointcut. The argument point-
cut is forbidden to contain context variables or join points
with runtime conditions (currently cflow, that, or target).

Types

base (pointcut) N→NC,F
returns all base classes resp. redefined functions of classes
in the pointcut

derived (pointcut) N→NC,F
returns all classes in thepointcut and all classes derived
from them resp. all redefined functions of derived classes

Context

that (type pattern) N→C
returns all join points where the current C++this pointer
refers to an object which is an instance of a type that is
compatible to the type described by thetype pattern

target (type pattern) N→C
returns all join points where the target object of a call is an
instance of a type that is compatible to the type described
by the type pattern

result (type pattern) N→C
returns all join points where the result object of a
call/execution is an instance of a type described by thetype
pattern

args (type pattern, ...) (N,...)→C
a list of type patternsis used to provide all joinpoints with
matching argument signatures

Instead of thetype patternit is possible here to pass the name of
a context variable to which the context information is bound.
In this case the type of the variable is used for the type matching.

Scope

within (pointcut) N→C
filters all join points that are within the functions or classes
in the pointcut

Algebraic Operators

pointcut && pointcut (N,N)→N, (C,C)→C
intersection of the join points in thepointcuts

pointcut || pointcut (N,N)→N, (C,C)→C
union of the join points in thepointcuts

! pointcut N→N, C→C
exclusion of the join points in thepointcut

f) Join Point Types

Code

C, CC, CE, CCons, CDes :
any, Call, Execution, Construction, Destruction

Name

N, NN, NC, NF , NT :
any, Namespace, Class, Function, Type

g) Join Point API

The JoinPoint-API is provided within every advice code body
by the built-in objecttjp of classJoinPoint.

Compile-time Types and Constants

That [type]
object type (object initiating a call)

Target [type]
target object type (target object of a call)

Result [type]
result type of the affected function

Arg::<i>::Type, Arg::<i>::ReferredType [type]
type of thei th argument of the affected
function (with 0≤ i < ARGS)

ARGS [const]
number of arguments

JPID [const]
unique numeric identifier for this join point

JPTYPE [const]
numeric identifier describing the type of
this join point (AC::CALL or AC::EXECUTION)

Runtime Functions and State

static const char *signature ()
gives a textual description of the join point (function name,
class name, ...)

That * that ()
returns a pointer to the object initiating a call or 0 if it is a
static method or a global function

Target * target ()
returns a pointer to the object that is the target of a call or
0 if it is a static method or a global function

Result *result ()
returns a typed pointer to the result value or 0 if the func-
tion has no result value

Arg::<i>::ReferredType *arg ()
returns a typed pointer to the argument value with compile-
time indexnumber

void *arg (int number)
returns a pointer to the memory position holding the argu-
ment value with indexnumber

void proceed ()
executes the original code in an around advice

AC::Action &action ()
returns the runtime action object containing the execution
environment to execute (trigger()) the original code en-
capsulated by an around advice

Runtime Type Information

static AC::Type type ()
static AC::Type resulttype ()
static AC::Type argtype (int i)

return a C++ ABI V3 conforming string representation of
the signature / result type / argument type of the affected
function

4.3. The Join Point Model

4.3.1. Join Point Types

AspectC++ uses a unified join point model to handle all types of advice in the same
way. This is different from AspectJ, which distinguishes betweenpointcutsandadvice
on the one hand andGTNsand introductionson the other. As shown in the example

8 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

above, in AspectC++ even match expressions are pointcuts and can be named. While
such a coherent language design is a good thing anyway, this is particularly useful in
combination with aspect inheritance and (pure) virtual pointcuts. In AspectC++, even
the pointcuts used for introductions and baseclass introductions can be (pure) virtual
and, thus, be defined or overridden in derived aspects. This is demonstrated in the
“Reusable Observer” example in section 5.1.
Regarding the implementation, the unified model requires join points to betyped in
AspectC++. The basic join point types areName(N) andCode(C). A name join point
represents a named entity from the C++ program, like a class, a function or a namespace.
It typically results from a match expression. A code join point represents a node in
the program execution graph, like the call to or execution of a function. Code join
points result from applying pointcut functions to name pointcuts. The basic types are
additionally separated into more specialized subtypes likeClass(NC) or Function(NF),
Execution(CE) or Construction(CCons). The aspect weaver uses the type information
to ensure that e.g. code advice (before, after, around) is only given to code join points.
Figure 1-f lists all join point types. The subtypes are, however, mostly irrelevant for the
user, as most pointcut functions accept the basic types and treat, for instance, aNC join
point as a the set ofNF join points describing all member functions.

4.3.2. Order Advice

Besides code advice (before, after, around) and (baseclass-) introductions, AspectC++
supports withorder advicea third type of advice. Order advice is used to define an
partial order of aspect precedencesper pointcut. This makes it possible to have different
precedences for different join points. For example, the order declarations

advice "Service" : order("Locking", !("Locking"||"Tracing"), "Tracing");

advice "Client" : order("Tracing", !"Tracing");

define that in the context of the class or namespaceService all advice given by the as-
pectLocking should be applied first, followed by advice from any aspect butLocking and
Tracing. Advice given byTracing should have the lowest precedence. However, forClient

the order is different. Advice given byTracing should be applied first. As order declara-
tions are itself advice, they benefit from the unified join point model. They can be given
to virtual pointcuts and can be declared in the context of any aspect. Hence, it is possible
to separate the precedence rules from the aspects they affect. The AspectC++ weaver
collects all partial order declarations for a join point and derives a valid total order. In
case of a contradiction, a weave-time error is reported.

4.3.3. Matching C++ Entities

As already mentioned in section 1.2, C++ has a rather complex type system, consist-
ing of fundamental types(int, short, ...) andclass types(class, struct, union), derived
types(pointer, array, reference, function) and types optionally qualified bycv-qualifiers
(const, volatile). Besidesordinary functionsandmember functions, C++ also supports
overloading a predefined set ofoperator functions. Classes can definetype conversion

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 9

Table 1. Matching of C++-specific function signatures

Expression Matches

“% IntArray::%(...)” 1–6 Any function, operator function, or type
conversion function in IntArray

“% IntArray::%(...) const” 1, 5 Any const -function, -operator function,
or -type conversion function in IntArray

“% IntArray::%<...>(...)” 3 Any instance of any template -function,
-operator function, or -type conversion
function in IntArray

“% IntArray::%<short>(...)” (3) Any <short> instance of any template
-function, -operator function or -type con-
version function in IntArray

“...::operator %(...)” 5, 6 Any type conversion function

“...::operator %*(...)” 5, 6 Any type conversion function that con-
verts to a pointer type

“% IntArray::operator =(...)” 4 Any assignment operator in IntArray

functions4 to provide implicit casts to other types. And finally, classes or functions can
be parameterizable withtemplate arguments.
The AspectC++ match expression language covers all these elements, because in C++
they are an integral part of a type’s or function’s name or signature. Hence, they should be
usable as a match criteria. The match expression language is defined by an own grammar,
which consists of more than 25 rules. We are therefore not going to describe it in detail,
but present match expressions for function signatures as one example for AspectC++’s
support for matching “C++ specific” entities.

class IntArray {
public :

int count() const ; (1)
void clear(); (2)
template < class T > init(const T* data, int n); (3)
IntArray& operator =(const IntArray& src); (4)

operator const int *() const ; (5)
operator int *(); (6)

};

The ClassIntArray consists of members that use cv-qualifiers (1, 5), templates arguments
(3), operator overloading (4), and type conversion functions (5, 6). Table 1 demonstrates,
how these elements are matched by various match expressions. Additional examples,
including match expressions for type and scope, can be found in Figure 1-d.

4.3.4. Intentionally Missing Features

AspectC++ intentionally does not implement theget() and set() pointcut functions,
known from AspectJ to give advice for field access. Even if desirable, they are not imple-

4often called type conversionoperators, too, as they are defined using theoperator keyword (e.g.
“operator int()”)

10 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

1 File: ObserverPattern.ah
2
3 aspect ObserverPattern {
4 // data structures to manage subjects and observers
5 ...
6 public :
7 // Interfaces for each role
8 struct ISubject {};
9 struct IObserver {

10 virtual void update (ISubject *) = 0;
11 };
12
13 // To be defined / overridden by the concrete derived aspect
14 // subjectChange() matches execution of all non-const methods
15 pointcut virtual observers() = 0;
16 pointcut virtual subjects() = 0;
17 pointcut virtual subjectChange() = execution ("% ...::%(...)"
18 && !"% ...::%(...) const") && within (subjects());
19
20 // Add new baseclass to each subject/observer class
21 // and insert code to inform observers after a subject change
22 advice observers () : baseclass (IObserver);
23 advice subjects() : baseclass (ISubject);
24
25 advice subjectChange() : after () {
26 ISubject* subject = tjp ->that();
27 updateObservers(subject);
28 }
29 void updateObservers(ISubject* subject) { ... }
30 void addObserver(ISubject* subject , IObserver* observer) { ... }
31 void remObserver(ISubject* subject , IObserver* observer) { ... }
32 };
33 ______________________
34 File: ClockObserver.ah
35
36 #include "ObserverPattern.ah"
37 #include "ClockTimer.h"
38
39 aspect ClockObserver : public ObserverPattern {
40 // define the pointcuts
41 pointcut subjects() = "ClockTimer";
42 pointcut observers() = "DigitalClock"||"AnalogClock";
43
44 public :
45 advice observers() : void update(ObserverPattern::ISubject* sub) {
46 Draw();
47 }
48 };

Figure 2. Reusable Observer-Pattern Aspect

mentable in a language that supports free pointers. Field access through pointers is quite
common in C/C++ and implies a danger of “surprising” side effects for such advice.

4.4. Join Point API

The join point API (Figure 1-g) is another part of AspectC++ that is heavily influenced
by the “C++ philosophy”. Compared to Java, C++ has a less powerful runtime type sys-
tem, but a more powerful compile-time type system. In Java, basically everything is a
Java.lang.Object at runtime, which facilitates the development of generic code, as in-
stances of any type can be treated asObject at runtime. In C++ there is no such common
root class. C++, by the means of overloading and templates, facilitates the development
of generic code that can be instantiated with any typeat compile-time. In general, Java
promotesgenericity at runtime5, while the C++ philosophy is to usegenericity at com-

5This is even true with Java generics introduced in the upcoming Java 5.0, which are basically a syntactic
wrapper around the “treat everything as an object” philosophy.

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 11

1 namespace win32 {
2 struct Exception {
3 Exception(const std::string& w, DWORD c) { ... }
4 };
5
6 // Check for "magic value" indicating an error
7 inline bool IsErrorResult(HANDLE res) {
8 return res == NULL || res == INVALID_HANDLE_VALUE;
9 }

10 inline bool IsErrorResult(HWND res) {
11 return res == NULL;
12 }
13 inline bool IsErrorResult(BOOL res) {
14 return res == FALSE;
15 }
16 ...
17
18 // Translates a Win32 error code into a readable text
19 std::string GetErrorText(DWORD code) { ... }
20
21 pointcut Win32API() = "% CreateWindow %(...)"
22 || "% BeginPaint (...)"
23 || "% CreateFile %(...)"
24 || ...
25 } // namespace Win32
26
27 ____________________
28
29 aspect ThrowWin32Errors {
30
31 // template metaprogram to generate code for
32 // streaming a comma-separated sequence of arguments
33 template < class TJP, int N >
34 struct stream_params {
35 static void process(ostream& os, TJP* tjp) {
36 os << *tjp ->arg< TJP::ARGS - N >() << ", ";
37 stream_params < TJP, N - 1 >::process(os, tjp);
38 } };
39 // specialization to terminate the recursion
40 template < class TJP >
41 struct stream_params < TJP, 1 > {
42 static void process(ostream& os, TJP* tjp) {
43 os << *tjp ->arg< TJP::ARGS - 1 >();
44 } };
45
46 advice call (win32::Win32API()) : after () {
47 if (win32::IsErrorResult(*tjp ->result())) {
48 ostringstream os;
49 DWORD code = GetLastError();
50
51 os << "WIN32 ERROR " << code << ": "
52 << win32::GetErrorText(code) << endl;
53 os << "WHILE CALLING: "
54 << tjp ->signature() << endl;
55 os << "WITH: " << "(";
56
57 // Generate joinpoint-specific sequence of
58 // operations to stream all argument values
59 stream_params < JoinPoint ,
60 JoinPoint::ARGS >::process(os, tjp);
61 os << ")";
62 throw win32::Exception(os.str(), code);
63 } }
64 };

Figure 3. An Aspect to Throw Win32 Errors as Exceptions

pile time. For this purpose, we extended the AspectJ idea of a runtime join point API by
a compile-time join point API, which provides static type information about the current
join point at compilation time.
The compile-time join point API is visible to advice code as classJoinPoint. Provided
information includes, besides other type information, the sequence of argument types

12 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

and the result type of the affected function.JoinPoint::Result is an alias for the func-
tion’s result type. The number of function arguments is available as compile-time con-
stantJoinPoint::ARGS. The function argument types are provided through the template
classJoinPoint::Arg<i >::Type. We intentionally used an integer template for this purpose,
as it makes it possible to iterate at compile time over the sequence of argument types by
template meta-programs. Such usage of the compile-time join point API is demonstrated
in the “Win32 Errorhandling” example in section 5.2.
The runtime join point API is visible to advice through the pointertjp, which refers to
an instance ofJoinPoint. By usingtjp, it is possible to retrieve the dynamic context, like
the pointer to the actual resultvalue(tjp->result()). Note that the function to retrieve the
value of an argument is overloaded. If the index of the argument is known at compile-
time, the template versiontjp->arg<i >() can be used. It takes the index as template pa-
rameter and (later at runtime) returns atypedpointer to the value. Otherwise, the unsafe
versiontjp->arg(i) has to be used, which takes the index as a function parameter and
returns anuntypedvoid pointer to the value.
The classJoinPoint is not only specific for each join point, it is furthermore tailored
down according to the individual requirements of the actual advice. If, for instance,
tjp->result() is never called in the advice code, the function is removed fromJoinPoint

and no memory is occupied by the reference to the result value at runtime. This “pay
only what you actually use” is important for facilitating AOP in the domain of embedded
systems, where small memory footprints are a crucial concern.

In AspectC++, the join point API also implements the functionality to proceed to the
intercepted original code from around advice (tjp->proceed()). It is also possible tostore
the context information of the intercepted function (returned bytjp->action()) anddele-
gateits execution to another function or thread. This offers a noticeable higher flexibility
than in AspectJ, whereproceed() can only be called from the advice code itself.

4.5. Language Summary

The previous sections presented only a subset of the AspectC++ language features. We
left out details about (context binding) pointcut functions, algebraic operations, or the
semantics of code advice, as they are very similar to AspectJ. Other elements, like the
aspect instantiation, are different from AspectJ, but left out because of space limitations.
Nevertheless, these features are available in AspectC++, too.

5. Examples

In the following sections, the expressive power of the AspectC++ language is demon-
strated by two real-world examples. The first demonstrates using virtual pointcuts with
baseclass introductions for a reusable implementation of the observer pattern. The sec-
ond example is an aspect that checks the result codes of Win32 API functions and throws
an exception in case of an error. It demonstrates how to use the compile-time join point
API to exploit the power of C++ template meta-programming in advice code.

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 13

5.1. Reusable Observer

Reusable implementations of design patterns are a well known application of AOP [12].
The listing in Figure 2 shows an AspectC++ implementation of the observer protocol
[11]. The abstract aspectObserverPattern defines interfacesISubject andIObserver (lines
8–11), which are inserted via baseclass introductions into all classes that take part in
the observer protocol (lines 22-23). These roles are represented by pure virtual point-
cuts subjects() andobservers(). Thus, their definition is delegated to derived concrete
aspects. A third virtual pointcut,subjectChange(), describes all methods that potentially
change the state of a subject and thereby should lead to a notification of the registered ob-
servers (line 17). The pointcut is defined asexecution(“%...::%(...)” && !”%...::%(...)

const”) && within(subjects()). It evaluates to theexecutionof all non-const methodsthat
are definedwithin a class fromsubject(). This is a reasonable default. However, it can
be overridden in a derived aspect if, for instance, not all state-changing methods should
trigger a notification. Finally, the notification of observers is implemented by giving after
execution advice tosubjectChange() (lines 25–28).
The ClockObserver aspect is an example for a concrete aspect derived from
ObserverPattern. To apply the pattern, the developer only has to define the pure virtual
pointcutssubjects() andobservers() (lines 41–42) and to write the introduction that in-
sertsupdate() into the observer classes (lines 45–47).

“Reusable Observer” is a typical application of aspects in the world of object-
orientation. TheObserverPattern implementation is even more generic than the AspectJ
implementation suggested by Hannemann [12], where thederivedaspect has to perform
the baseclass introductions for theObserver and Subject interfaces. Purpose and name
of these interfaces are, however,implementation detailsof the protocol and should be
hidden. Moreover, the derived aspect has to define thesubjectChange() pointcut in any
case. In AspectC++ this is not necessary, as it is possible to take advantage from the
C++ notion of non-modifying (const) methods in match expressions and thereby find all
potentially state-changing methods automatically.

5.2. Win32 Errorhandling

Every program has to deal with the fact that operations might fail at runtime. Today,
most developers favorexceptionsfor the propagation of errors. However, especially in
the C/C++ world, there are still thousands of legacy libraries that do not support excep-
tion handling, but indicate an error situation via the function’sreturn value. In the Win32
API, for instance, an error is indicated by returning a special “magic value”. The corre-
sponding error code (reason) can then be retrieved using theGetLastError() function. The
actual “magic value” needed to check the result depends on thereturn typeof the func-
tion. BOOL functions, for instance, returnFALSE, while HANDLE functions return eitherNULL or
INVALID_HANDLE_VALUE. The aim of theThrowWin32Errors aspect (Figure 3) is to perform the
appropriate check after each call to a Win32 function and thereby transform the Win32
model of error handling into an exception based model. This is actually very useful for
developers that have to work with the Win32 API.

The ThrowWin32Errors aspect gives after advice for all calls to functions defined by
the win32::Win32API() pointcut. (Figure 3, lines 21–24) The advice code checks for an
error condition using thewin32::IsErrorResult() helper function. This function performs

14 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

the check against the type-dependent “magic values”. It is overloaded for each return
type used by Win32 functions. (lines 6–16). The compiler’s overload resolution deduces
(at compile-time) for each join point the correct helper function to call. Note that this
generic implementation of the advice code is only possible, becausetjp->result() re-
turns a pointer of the real (static) type of the affected function.
The win32::Exception object thrown in case of an error should include all context infor-
mation that can be helpful to figure out the reason for the actual failure. The most tricky
part to solve here is to build a string representation from the actual parameter values.
In AspectJ one would iterate atruntimeover all arguments and callObject.toString()
on each argument. However, in C++ it is not possible to perform this at runtime, as
C++ types do not share a common root class that offers generic services liketoString().
The C++ philosophy of genericity is based onstatic typing. Retrieving a string repre-
sentation of any object is realized by overloading the stream operatorostream& operator

< <(ostream&, T) for each typeT. Therefore, we have to iterate atcompile-timeover the
join point-specific list of argument types to generate a sequence of stream operator calls,
each processing (later at runtime) an argument value of the correct type. This is im-
plemented by a small template meta-program (lines 33–44), which is instantiated at
compile-time with theJoinPoint type (line 39) and iterates, by recursive instantiation of
the template, over the join-point-specific argument type listJoinPoint::Arg<I >. For each
argument type, astream_params class with aprocess() method is generated, which later
at runtime will stream the typed argument value (retrieved viatjp->arg<I >()) and recur-
sively call stream_params::process() for the next argument (lines 35–37, 42–43). Again,
the compiler automatically deduces the actual operator to call for a specific argument
type during overload resolution.

The “Win32 Errorhandling” example shows, how aspects can be used with the pro-
cedural paradigm followed by C-style legacy libraries. It furthermore demonstrates, how
advice code can take advantage of the generic and generative programming paradigm
offered by C++ templates.6 A recent paper demonstrates, that this combination of AOP
and templates can lead to very generic and efficient aspect implementations [18].

5.3. Examples Summary

The “Reusable Observer” and “Win32 Errorhandling” examples show, how AspectC++
can be used with very different “styles” of C/C++ code, that is, with the different pro-
gramming paradigms integrated into the C++ language. They also illustrate that certain
AspectC++ concepts fits well into the C++ philosophy of static typing, which enables
developers to write very expressive aspect code.

6. The Weaver

The AspectC++ weaverac++ is a source-to-source front-end that transforms AspectC++
programs into C++ programs7. The woven code can then be built with any standard-
conforming C++ compiler, like g++ or VisualC++. AspectC++ programs have already

6It is, of course, inconvenient to use template meta-programming to build just a string of argument values.
However it is the only way of doing this in C++at all.

7Theac++ weaver and documentation are available fromhttp://www.aspectc.org/

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 15

been executed on a broad variety of platforms, ranging from the smallest 8 bit micro-
controllers to 64 bit servers. The following sections provide some details about the
weaver implementation.

6.1. Translation Process

A C++ program consists of a set of self-contained8 translation units. The translation
process is performed in two steps. First, the compiler transforms each translation unit
into an object file, which contains binary code augmented by symbol information that
describes all externally visible and unresolved symbols. Then, the linker binds all object
files and creates the executable code by resolving all dependencies.
Various development tools like IDEs or program builders likemake strongly rely on this
two-step translation process. Thus, for the sake of easy integration, theac++ command
is called for each translation unit and produces C++ code that can be directly fed into
the C++ compiler. On the one hand this design decision facilitates the implementation of
wrapper programs, which hideac++ from the build environment. On the other hand this
significantly restricts the knowledge of the aspect weaver to single translation units. To
overcome this limitation the following problems had to be solved.

6.1.1. Visibility of aspects

Aspects should be able to affect code in any translation unit. Therefore, a mechanism is
needed to include the definition of an aspect in all translation units. Programmers should
not be forced to include the definition by hand using the C++ preprocessor directive
#include. This would violate the “obliviousness” goal. Therefore, we adopted the “forced
include” mechanism known from many C++ compilers for that purpose. In practice, this
means that aspect definitions are stored in “aspect header files” (*.ah). The location of
these files is provided on the command line and the weaver automatically includes all
aspect headers in the currently processed translation unit.

6.1.2. Link-Once Code

Traditionally, a C/C++ linker does not accept two externally visible symbols with the
same name to be defined in two different translation units. This is problematic for a C++
aspect weaver, because there are many situations, in which global objects have to be
generated. Examples are the instances of singleton aspects and introductions of static at-
tributes or non-inline functions. As theac++ weaver always processes only a single trans-
lation unit, there is no global knowledge, which would help to find the right place for
inserting the generated code. To solve this problem,ac++ exploits the so-called COMDAT
feature of state-of-the-art C++ compilers. A standard-compliant C++ compiler some-
times has the same problem asac++. For example, non-inline member functions or static
attributes of template classes are allowed to be defined in header files. To avoid the prob-
lem of duplicate symbols the compiler and linker use “vague linkage”. Thus, by using
certain code generation patterns COMDAT can also be used by the weaver. In most cases,
generated global code is transparently wrapped by a template class.

8anything that is used either has to be defined or declared.

16 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

Scanner Preprocess. Parser and
Semantics

Manipulator

WeaverTracker Dog

C++ Source

Planner

Tokens Tokens

Tokens

CommandsSyntax Trees Aspect&Class DB

Plan

AspectC++

PUMA

Join Points

Project RepositoryAspectC++ Source

Figure 4. Architecture of the AspectC++ Weaver

6.1.3. Information sharing

To provide at least a “partial global” knowledgeac++ accesses a global project repository.
This is a file, which describes processed translation units by listing join points, aspects,
and advice. It can be used by oneac++ incarnation to save information for otherac++
incarnations running later. For example, it would be impossible to provide a project-wide
unique ID (Figure1-g) for each join point without the project repository. As a side-effect
the project repository can also be used by IDEs, like the Eclipse ACDT9, to visualize
join points.

6.2. Architecture and Implementation

Figure 4 illustrates the architecture ofac++ by showing the main building blocks and the
data flow during a program transformation from AspectC++ to C++. The weaver imple-
mentation is based on PUMA, a framework for C++ code analysis and transformation.
PUMA is developed in-line with AspectC++ by our group. It contains a complete C++
front-end, which supports standard ISO C++ 98 as well as several g++ and VisualC++
language extensions. Theac++ weaver has a weight of 85 ksloc, from which are 70 ksloc
used solely by the PUMA framework, that is for analyzing and manipulating C++ code.

The weaving process starts in PUMA with scanning, preprocessing, parsing, and a
full semantic analysis of the source code. The semantic analysis includes complete func-
tion call resolution, necessary to implement call advice, and full template instantiation,
needed for matching and weaving in template instances.
The ac++ level first processes the resulting syntax tree. TheTracker Dogis responsible
to find all points in the code, which might be affected by advice. The resulting poten-
tial join points are passed to thePlanner, which also uses theAspect&Class Database
from theParser and Semantics(PUMA level). The planner internally parses and analyses
pointcut expressions (including pointcut type checks) and calculates the sets of match-
ing join points. For each join point the planner sets up a plan that is later used by the
Weaverto generate a sequence of code manipulation commands. The code manipulation
is performed again on the PUMA-level by theManipulator.

The PUMA framework itself is implemented in AspectC++. Aspects are, for in-
stance, used to adapt the system to compiler-specific peculiarities. The PUMA core im-

9available fromhttp://acdt.aspectc.org/

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 17

Table 2. Code Sizes of “Hello World” implementations (Bytes)

[g++ 3.3.3] plain before around

no opt. (-o0) 108 234 437

full opt. (-o6) 37 43 172

plements only the standard C++ grammar. All additional compiler-specific grammar ex-
tensions are woven in by aspects. Currently such grammar extensions are implemented
for VisualC++ (10 aspects, 12 introductions, 13 execution advice) and g++ (1 aspect, 15
introductions, 15 execution advice).

6.3. Code Generation

6.3.1. JoinPoint Structure

AspectC++ generates a C++ class with a unique name for each join-point that is affected
by advice code. By performing static code analysis on the advice and templates instan-
tiated by advice (withJoinPoint as a template parameter)ac++ avoids to generate un-
needed elements in this class. The following code fragment shows a part of theJoinPoint

structure for a call join point in the “Win32 Errorhandling” example.

struct TJP_WndProc_1 {
...
template <int I> struct Arg {

typedef void Type;
typedef void ReferredType;

};
template <> struct Arg <0> {

typedef ::HWND Type;
typedef ::HWND ReferredType;

};
...
void **_args;
inline void *arg (int n) {return _args[n];}
template <int I> typename Arg<I>::ReferredType *arg () {

return (typename Arg<I>::ReferredType*)arg (I); }
};

6.3.2. Advice Transformation

Advice code is transformed into a member function of the aspect, which in turn is
transformed to a class. If the advice implementation depends on theJoinPoint type,
it is transformed into a template member function and the unique join point class is
passed as a template argument to the advice code. Thus, in this case the advice code is
generic and can access all type definitions (C++ typedefs) inside the join-point class with
JoinPoint::Typename, as described in section 4.4. The following code fragment shows
JoinPoint dependent advice code after its transformation into a template function.

class ThrowWin32Errors {
// ...
template < class JoinPoint >

18 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

void __a0_after(JoinPoint *tjp) {
if (win32::IsErrorResult(*tjp->result())) {

// ...
}

};

6.3.3. Weaving in Regular Code

Weaving of call or execution advice is based on inlined wrapper functions.
For instance, in the “Win32 Errorhandling” example the after call advice for
BeginPaint() is implemented by replacing the call expressionBeginPaint(NULL,&ps) by
__call_WndProc_1_0(NULL,&ps). The wrapper function callsBeginPaint() first and invokes
the advice afterwards.

inline ::HDC __call_WndProc_1_0 (::HWND arg0 ,
::LPPAINTSTRUCT arg1) {

::HDC result;
void *args_WndProc_1[] = { (void *)&arg0 , (void *)&arg1 };
TJP_WndProc_1 tjp_WndProc_1 = { args_WndProc_1 , &result };
result = ::BeginPaint(arg0 , arg1);
AC::invoke_ThrowWin32Errors_ThrowWin32Errors_a0_after <

TJP_WndProc_1 > (&tjp_WndProc_1);
return (::HDC) result;

}

Although generating a wrapper function seems straightforward, call advice weaving is a
complex transformation. For example, a call can syntactically be expressed a numerous
ways in C++. Specific transformation patterns are needed for unary and binary operator
calls. Even invisible calls by implicitly called conversion functions have to be considered.

6.3.4. Weaving in Template Code

AspectC++ supports advice for join points associated with individual template instances.
Therefore, the weaver has to perform a full template instantiation analysis to distinguish
template instances and to compare their signatures with match-expressions. To be able
to affect only certain instances on the code generation level, our weaver uses the explicit
template specialization feature of C++. For example, if advice affects only the instance
container<int> the template code ofcontainer is copied, manipulated according to the
advice and the instantiation, and declared as a specialization ofcontainer for int as shown
here:10

template <class ElementType > class container {
public :

void insert (ElementType elem) {...}
};
...

namespace AC{ typedef int t_container_0; }
template <> class container <AC::t_container_0 > {

10C++ does not support the explicit specialization for template functions. However, we can work around
this problem by defining a helper template class. Furthermore, some compilers do not support explicit special-
ization in non-namespace scope. We handle this problem by using partial specialization with an extra dummy
argument.

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 19

public :
inline void __exec_old_insert(AC::t_container_0 elem){...}
void insert (AC::t_container_0 arg0) {

AC::invoke_MyAspect_a0_before ();
this ->__exec_old_insert(arg0);

}
};

6.4. Overhead

The code generated byac++ is quite efficient in most cases and does not lead to a signif-
icant overhead. AspectC++ counts, however, on inlining of the generated wrapper func-
tions by the compiler. As demonstrated in [18], the runtime overhead of code advice is
in the range of just a few CPU clock cycles. It mainly depends on the amount of state
that is requested by the advice code using e.g. the join point API. Table 2 illustrates the
overhead regarding code size for certain types of advice. The depicted numbers show
the code sizes of a simple “Hello World” application, if using no aspect (“plain”,printf-
statement inmain()), before execution advice (emptymain(), printf-statement given by
advice), and around execution advice, respectively. In the optimized case the size of “be-
fore” is almost the same as of “plain”. The code generated for around advice, however,
does not accommodate optimization, as it calls the original function through an extra
function pointer, which prevents inlining. This gives room for further improvements of
ac++.

7. Summary and Conclusions

In this paper, we described our work on the design and development of AspectC++, an
AOP language extension and weaver for C++. We motivated our work with the ongo-
ing significance of C++ in software industry. Research and tool development for C++
is hard. We examined, from the perspective of an AOP language designer, some of the
major peculiarities of C++ and categorized them into a conceptual level (language) and
a technical level (tools).
On the conceptual level, we emphasized that an AOP extension for C++ has to fit into
the philosophy of C++. Multi-paradigm programming, the focus on static typing and
compile-time genericity, as well as backward compatibility to existing code are the fun-
damental elements of this philosophy. In AspectC++, this is addressed in many places,
but particularly by the match expression language, the (static) join point API and the
code generated by the weaver. AspectC++ thereby integrates AOP well into the C++ lan-
guage, which was also demonstrated in the examples.
On the technical level, we discussed some of the major difficulties regarding tool devel-
opment for C++. We pointed out that an aspect weaver benefits from a fully-fledged syn-
tax/semantics analysis, which is, however, a very tedious task to implement. The com-
plexity of the language and the (anachronistic) translation model put a heavy burden
on the weaver implementation. We presented some details of the implementation and
demonstrated, how the weaver transforms AspectC++ code into C++ code.

20 Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++

Today, AspectC++ is already used by researchers from academia and industry. Cur-
rently, 156 people, most of them from companies in the telecommunications or embed-
ded systems area, are subscribed on theac++ user mailing list. The most prominent aca-
demic applications can be found in the domain of tailorable embedded databases [24],
namely the Berkeley DB, and operating systems, which is our main field of research. We
use AspectC++ in our PURE andCiAO operating system product lines [19,22].

We can already carefully conclude that AspectC++ does not lead to a significant run-
time and memory overhead. However, more investigations are necessary on this topic, as
this depends significantly on the interaction of the generated code with the optimization
capabilities of the back-end compiler.

Regarding future work, we will continue working on the template support. This has
evolved a lot over the last months, however, is still considered “experimental”. We also
plan to extend weaver in order to support plain C applications11. Weaving in macro-
generated code is another feature that will be addressed in near future, as well as im-
proving the code generation for around advice. However, AspectC++ is almost feature-
complete. We are convinced that it is now ready for a broad adoption.

References

[1] Andrei Alexandrescu.Modern C++ Design: Generic Programming and Design Patterns
Applied. AW, 2001.

[2] Otto Skrove Bagge, Karl Trygve Kalleberg, Magne Haveraaen, and Eelco Visser. Design of
the CodeBoost transformation system for domain-specific optimisation of C++ programs. In
Dave Binkley and Paolo Tonella, editors,Third International Workshop on Source Code Anal-
ysis and Manipulation (SCAM 2003), pages 65–75, Amsterdam, The Netherlands, September
2003. IEEE.

[3] L. Bergmans.Composing Concurrent Objects. PhD thesis, University of Twente, 1994.
[4] Shigeru Chiba. Metaobject Protocol for C++. In10th ACM Conf. on OOP, Systems, Lan-

guages, and Applications (OOPSLA ’95), pages 285–299, October 1995.
[5] Yvonne Coady and Gregor Kiczales. Back to the future: A retroactive study of aspect evo-

lution in operating system code. In Mehmet Akşit, editor,2nd Int. Conf. on Aspect-Oriented
Software Development(AOSD ’03), pages 50–59, Boston, MA, USA, March 2003. ACM.

[6] Yvonne Coady, Gregor Kiczales, Michael Feeley, and Greg Smolyn. Using AspectC to im-
prove the modularity of path-specific customization in operating system code. InESEC/FSE
’01, 2001.

[7] Krysztof Czarnecki, Lutz Dominick, and Ulrich W. Eisenecker. Aspektorientierte Program-
mierung in C++, Teil 1–3.iX, Magazin für professionelle Informationstechnik, 8–10, 2001.

[8] Krysztof Czarnecki and Ulrich W. Eisenecker.Generative Programming. Methods, Tools and
Applications.AW, May 2000.

[9] Christopher Diggins. Aspect-Oriented Programming& C++. Dr. Dobb’s, 408(8), August
2004.

[10] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming.CACM, pages
29–32, October 2001.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. AW, 1995.

11Actually,ac++ is already able to weave in C code, but the generated code has always to be compiled with
a C++ compiler.

Spinczyk, Lohmann, Urban / Advances in AOP with AspectC++ 21

[12] Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java and AspectJ.
In 17th ACM Conf. on OOP, Systems, Languages, and Applications (OOPSLA ’02), pages
161–173. ACM, 2002.

[13] William Harrison and Harold Ossher. Subject-oriented programming—a critique of pure
objects. In8th ACM Conf. on OOP, Systems, Languages, and Applications (OOPSLA ’93),
pages 411–428, September 1993.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,11th Eur. Conf. on OOP
(ECOOP ’97), volume 1241 ofLNCS, pages 220–242. Springer, June 1997.

[15] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. Getting started with AspectJ.CACM, pages 59–65, October 2001.

[16] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. In J. Lindskov Knudsen, editor,15th Eur. Conf. on OOP
(ECOOP ’01), volume 2072 ofLNCS, pages 327–353. Springer, June 2001.

[17] Karl J. Lieberherr.Adaptive Object-Oriented Software: the Demeter Method with Propaga-
tion Patterns. PWS, 1996.

[18] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic advice: On the combination
of AOP with generative programming in AspectC++. In G. Karsai and E. Visser, editors,3rd
Int. Conf. on Generative Programming and Component Engineering (GPCE ’04), volume
3286 ofLNCS, pages 55–74. Springer, October 2004.

[19] Daniel Lohmann and Olaf Spinczyk. Architecture-Neutral Operating System Components.
19th ACM Symp. on OS Principles (SOSP’03), October 2003. WiP session.

[20] Sibylle Schupp, Douglas Gregor, David R. Musser, and Shin-Ming Liu. Semantic and behav-
ioral library transformations.Information and Software Technology, 44(13):797–810, 2002.

[21] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. AspectC++: An aspect-
oriented extension to C++. In40th Int. Conf. on Technology of OO Languages and Systems
(TOOLS Pacific ’02), pages 53–60, Sydney, Australia, February 2002.

[22] Olaf Spinczyk and Daniel Lohmann. Using AOP to develop architecture-neutral operat-
ing system components. In11th SIGOPS Eur. W’shop, pages 188–192, Leuven, Belgium,
September 2004. ACM.

[23] A. Tešanovíc, D. Nyström, J. Hansson, and C. Norström. Aspects and components in real-
time system development: Towards reconfigurable and reusable software.Embedded Com-
puting, February 2004.

[24] A. Tešanovíc, K. Sheng, and J. Hansson. Application-tailored database systems: a case of
aspects in an embedded database. In8th Int. Database Engineering and Applications Symp.
(IDEAS ’04), Coimbra, Portugal, July 2004. IEEE.

